Abstract
Electrical distribution utilities have been dealing with the problem of estimation of distribution network load diagrams, either for operation studies or in forecasting models for planning purposes. Load curve assessment is essential for an efficient management of electric distribution systems. However, the only information available for most of the loads (namely LV loads) is related to monthly energy consumption. The general procedure uses measurements in consumers to construct inference engines that predict load curves using commercial information. This paper presents a new approach for this problem, based on Kohonen maps and Artificial Neural Networks (ANN) to estimate load diagrams for the portuguese distribution utilities. A method for estimating error bars is also proposed in order to provide a high order information about the performance of load curve estimation process. Performance attained is discussed as well as the method to achieve confidence intervals of the main predicted diagrams.
Preview
Unable to display preview. Download preview PDF.
References
Comellini, E. et al., “Correlations entre Puissance et Energie Consommèe par les Charges des Reseaux Publiques de Distribution”, Proceedings CIRED, Liège, 1979
Canal, M. et al., “Le sistème informatique de gestion des ouvrages BT. Calcul des charges appelèes par les rèseaux basse tension”, RGE, N°2, 1984
Pensoz, H., et al., “La planification des réseaux éléariques”, Planification des Rèseaux Moyenne Tension Eyrolles, 1984
Juuti, P. et al., “The Use of Customer Load Profiles in Distribution Network Design and Operation Planning”, Proceedings ISEDEM, Singapore, 1988
Oliveira, L. et al., “Load Curve Management”, CIRED Argentina, 1996
Kohonen, T., Self Organization and Associative Memory, Springer-Verlag, Berlin, 1984
Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, NY, 1981
Nix, David A. et al., “Learning Local Error Bars for Nonlinear Regression”, In Advances in Neural Information Processing Systems, G. Tesauro, D.S. Touretzky, and T.K. Lean (Eds.), MIT Press, 1995
Chryssolouris, George, “Confidence Interval Prediction for Neural Networks”, in Trans. on Neural Networks, Vol. 1, Jan 1996
Tom Heskes, “Practical Confidence and Prediction Intervals”, In Advances in Neural Information Processing Systems, M. Mozer, M. Jordan, T. Petsche (Eds.), MIT Press, 1997
Bellido, I. et al., “Do Backpropagation Neural Networks have Normal Weight Distributions?”, ICANN'93, 1993
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fidalgo, J.N., Matos, M., Ponce de Leão, M.T. (1997). Assessing error bars in distribution load curve estimation. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020286
Download citation
DOI: https://doi.org/10.1007/BFb0020286
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive