Skip to main content

Assessing error bars in distribution load curve estimation

  • Part VII:Prediction, Forecasting, and Monitoring
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

Electrical distribution utilities have been dealing with the problem of estimation of distribution network load diagrams, either for operation studies or in forecasting models for planning purposes. Load curve assessment is essential for an efficient management of electric distribution systems. However, the only information available for most of the loads (namely LV loads) is related to monthly energy consumption. The general procedure uses measurements in consumers to construct inference engines that predict load curves using commercial information. This paper presents a new approach for this problem, based on Kohonen maps and Artificial Neural Networks (ANN) to estimate load diagrams for the portuguese distribution utilities. A method for estimating error bars is also proposed in order to provide a high order information about the performance of load curve estimation process. Performance attained is discussed as well as the method to achieve confidence intervals of the main predicted diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Comellini, E. et al., “Correlations entre Puissance et Energie Consommèe par les Charges des Reseaux Publiques de Distribution”, Proceedings CIRED, Liège, 1979

    Google Scholar 

  2. Canal, M. et al., “Le sistème informatique de gestion des ouvrages BT. Calcul des charges appelèes par les rèseaux basse tension”, RGE, N°2, 1984

    Google Scholar 

  3. Pensoz, H., et al., “La planification des réseaux éléariques”, Planification des Rèseaux Moyenne Tension Eyrolles, 1984

    Google Scholar 

  4. Juuti, P. et al., “The Use of Customer Load Profiles in Distribution Network Design and Operation Planning”, Proceedings ISEDEM, Singapore, 1988

    Google Scholar 

  5. Oliveira, L. et al., “Load Curve Management”, CIRED Argentina, 1996

    Google Scholar 

  6. Kohonen, T., Self Organization and Associative Memory, Springer-Verlag, Berlin, 1984

    Google Scholar 

  7. Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, NY, 1981

    Google Scholar 

  8. Nix, David A. et al., “Learning Local Error Bars for Nonlinear Regression”, In Advances in Neural Information Processing Systems, G. Tesauro, D.S. Touretzky, and T.K. Lean (Eds.), MIT Press, 1995

    Google Scholar 

  9. Chryssolouris, George, “Confidence Interval Prediction for Neural Networks”, in Trans. on Neural Networks, Vol. 1, Jan 1996

    Google Scholar 

  10. Tom Heskes, “Practical Confidence and Prediction Intervals”, In Advances in Neural Information Processing Systems, M. Mozer, M. Jordan, T. Petsche (Eds.), MIT Press, 1997

    Google Scholar 

  11. Bellido, I. et al., “Do Backpropagation Neural Networks have Normal Weight Distributions?”, ICANN'93, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fidalgo, J.N., Matos, M., Ponce de Leão, M.T. (1997). Assessing error bars in distribution load curve estimation. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020286

Download citation

  • DOI: https://doi.org/10.1007/BFb0020286

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics