Abstract
We develop a criteria based on the estimation of the joint probability density function (pdf) of the input and the error, and on the pdf of the input. It is made to decide when the couple input/model no longer fit together. The estimation of the pdf is made through a Probabilistic Radial Basis Function Network (PRBFN), which can also be used to estimate the given task. We compare the results when using a dedicated network, or when extracting the density value directly from the network which estimates the input-output mapping. We show the results of our approach on an electrical load of Spain.
The work of T. Czernichow was enabled by the Lavoisier grant of the french ministry of foreign affairs.
Preview
Unable to display preview. Download preview PDF.
References
T. Czernichow, A. Murñoz, “Variable Selection through Statistical Sensitivity Analysis: Application to feedforward and recurrent networks.,” Institut National des Télécommunications, Dept. Signal et Images, Technical Report 95-07-01, 1995.
T. Czernichow, “Architecture Selection through Statistical Sensitivity Analysis,” presented at ICANN'96, Bochum, pp. 179–184, Springer Verlag.
A. Muñoz San Roque, “Aplicación de técnicas de Redes Neuronales Artificiales al diagnostico de procesos industriales,” PhD thesis, Universidad Pontificia Comillas, Dept. Electrotecnia y Sistemas,1996.
T. Czernichow, “Apport des réseaux récurrents à la prévision de séries temporelles, application à la prévision de consommation d'électricité,” PhD thesis, Intelligence Artificielle et Reconnaissance de Formes. Université Pierre et Marie Curie (Paris 6), Lab. INT-SIM et Lab. Laforia,1996.
D. F. Specht, “A General Regression Neural network,” IEEE Trans. On Neural Networks, vol. 2, pp. 568–576, 1991.
J. Moody, C. J. Darken, “Fast Learning in Networks of Locally Tuned Processing Units,” Neural Computation, vol. l, pp. 281–249, 1989.
W. Wienholt, “Optimizing the structure of radial basis function by optimizing fuzzy inference systems with evolution strategy,” Ruhr-Universitat Bochum, Institut fur Neuroinformatik, 44780 Bochum 93-07, 1993.
F. Girosi, T. Poggio, “Networks and Best Approximation Property,” Biological Cybernetics, vol. 63, pp. 169–176, 1990.
J. Park, I.W. Sandberg, “Universal Approximation Using Radial Basis Function Networks,” Neural Computation, vol. 3, pp. 246–257, 1991.
B. W. Silverman, Density Estimation for Statistics and Data Analysis: Chapman and Hall, ISBN 0-412-24620-l, 1990.
C. M. Bishop, Neural Networks for Pattern Recognition: Oxford University Press, ISBN 0-19-853864-2, 1995.
T. Czernichow, B. Dorizzi, A. Germond, P. Caire, “Improving Recurrent Network Load Forecasting,” presented at IEEE-ICNN, Perth, Australia, pp. 899–905, 1995.
T. Czernichow, A. Piras, K. Imhof, P. Caire, Y. Jaccard, B. Dorizzi, A. Germond, “Short Term Electrical Load Forecasting with Artificial Neural Networks,” Int. Journal of Eng. Int. Syst., vol. 4, pp. 85–99, 1996.
A. Piras, A. Germond, B. Buchenel, K. Imhof, Y. Jaccard, “Heterogeneous Artificial Neural Networks for Short Term Load Forecasting,” IEEE Trans. on Power systems, vol. 11, N°1, pp. 397–402, 1995.
T. Parzen, “On Estimation of a Probability Density Function and Mode,” Ann. Math. Stat., vol. 33, pp. 1065–1076, 1962.
T. Cacoullos, “Estimation of a MultiVariate Density,” Ann. Inst Stat. Math., vol. 18, pp. 179–189, 1966.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Czemichowl, T., Muñoz, A. (1997). A probability estimation based criteria for model evaluation. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020288
Download citation
DOI: https://doi.org/10.1007/BFb0020288
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive