Skip to main content

Modelling conditional probabilities with committees of RVFL networks

  • Part VII: Prediction, Forecasting, and Monitoring
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

Training neural networks for predicting conditional probabilities can be accelerated considerably by the incorporation of the Random Vector Functional Link (RVFL) concept. This allows the creation of a large committee of predictors, which was found to lead to a significant improvement of the generalisation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop C.M. (1995): Neural Networks for Pattern Recognition. Oxford University Press, New York 1995.

    Google Scholar 

  2. Dempster A.P., Laird N.M., Rubin D.B. (1977): J. Roy. Stat. Soc., B39, 1–38.

    Google Scholar 

  3. Harrison D. and Rubinfeld D.L. (1978): Journal of Environmental Economics and Management 5, 81–102.

    Google Scholar 

  4. Husmeier D., Taylor J.G. (1997): Neural Networks 10 (3), 479–497.

    Google Scholar 

  5. Husmeier D., Taylor J.G. (1997): Proc. ICANNGA `97, Springer Verlag, Vienna.

    Google Scholar 

  6. Igelnik B., Pao, Y.H. (1995): IEEE Trans. Neural Networks 6, 1320–1329.

    Google Scholar 

  7. Jordan M.I., Jacobs R.A. (1994): Neural Computation 6, 181–214.

    Google Scholar 

  8. Neal R.M. (1995): PhD thesis, University of Toronto, Canada.

    Google Scholar 

  9. Neuneier R., Hergert F., Finnoff W., Ormoneit D. (1994): ICANN `94, 689–692.

    Google Scholar 

  10. Pao Y.H., Park G.H., Sobajic D.J. (1994): Neurocomputing 6, 163–180.

    Google Scholar 

  11. Sharkey A.J.C., Sharkey N.E., Gopinath O.C. (1995): In L. Niklasson, M. Boden (Eds.), Current Trends in Connectionism, 165–178, Lawrence Erlbaum Associates: Hillsdale, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Husmeier, D., Taylor, J.G. (1997). Modelling conditional probabilities with committees of RVFL networks. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020292

Download citation

  • DOI: https://doi.org/10.1007/BFb0020292

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics