Abstract
The increasing extent of automation in manufacturing processes requires flexible and reliable tool monitoring systems. One of the most important and most difficult tasks in this context is the on-line supervision of a tool's wear. Considering the state of wear and the actual working process (e.g. rough or finish turning) it is possible to exchange a tool just in time, which offers significant economic advantages. This paper presents a new method to classify a characteristic wear parameter by means of neural networks. In order to find an appropriate network paradigm, multilayer perceptrons, Fuzzy ARTMAPS, self-organizing maps and NEFCLASS networks are investigated. The input parameters of the networks are process-specific parameters (like the feed rate or the cutting speed) and specific coefficients extracted from three measured force signals.
Preview
Unable to display preview. Download preview PDF.
References
Bukkapatnam, S. T. S.; Kumara, S. R. T.; Lakhtakia, A.: Fractal Estimation of Flank Wear in Turning Using Time-Delay Neural Networks; in: Intelligent Engineering Systems through Artificial Neural Networks (eds. Dagli, C. H. et al.); vol. 4; ASME Press, New York, 1994; (Proceedings of the Artificial Neural Networks in Engineering (ANNIE' 94) Conference)
Das, S.; Chattopadhyay, A. B., Murthy, A. S. R.: Force Parameters for Online Tool Wear Estimation: A Neural Network Approach; in: Neural Networks; vol. 9 (9), 1996
Golz, H. U.; Schillo, E.; Wolf, A.; Kaufeld, M.; Sprengel, P.; Johannsen, P.; Heinek, D.: Bewertung von aus Sicht der Anwender; in: Überwachung von Zerspan-und Umformprozessen; VDI-Verlag, Düsseldorf, 1995; (Proceedings of the CIRP/VDI conference, VDI Berichte no. 1179)
Klauss, W.: Das richtige System — Erfahrungen beim Drehen mit Werkzeugüberwachungssystemen; in: fertigung, nov. / dec. 1995
Leem, C. S.; Dornfeld, D. A.; Dreyfus, S. E.: A Customized Neural Network for Sensor Fusion in On-Line Monitoring of Cutting Tool Wear; in: Journal of Engineering for Industry (Transactions of the ASME); vol. 117, may 1995
Li, S.; Elbestawi, M. A.: Tool Condition Monitoring in Machining by Fuzzy Neural Networks; in: Journal of Dynamic Systems, Measurement and Control (Transactions of the ASME); vol. 118, dec. 1996
Neural Ware, Inc.; Pittsburgh (PA); Neural Computing — A Technology Handbook for Neural-Works Professional II/PLUS and Neural-Works Explorer, 1993
Nauck, D.; Kruse, R.: NEFCLASS — A Neuro-Fuzzy Approach for the Classification of Data; in: Applied Computing (eds. George, K. M. et al.); ACM Press, 1995, (Proceedings of the 1995 ACM Symposium on Applied Computing)
Nauck, D.; Nauck, U.; Kruse, R.: Generating Classification Rules with the Neuro-Fuzzy System NEFCLASS; in: Proceedings of the Biennal Conference of the North American Fuzzy Information Processing Society (NAFIPS'96), 1996
Rojas, R.: Neural Networks — A Systematic Introduction; Springer-Verlag, Berlin, Heidelberg, New York, 1996
Shaw, M. C.: Metal Cutting Principles; Oxford University Press, Oxford, 1989
Warnecke, G.; Müller, M.: Identification and Monitoring of Cutting Processes by Artificial Neural Networks; in: Intelligent Engineering Systems through Artificial Neural Networks (eds. Dagli, C. H. et al.); vol. 4; ASME Press, New York, 1994; (Proceedings of the Artificial Neural Networks in Engineering (ANNIE' 94) Conference)
Zell, A.: Simulation Neuronaler Netze; Addison-Wesley, Bonn, Paris, Reading (MA), 1994
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sick, B. (1997). Classifying the wear of turning tools with neural networks. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020293
Download citation
DOI: https://doi.org/10.1007/BFb0020293
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive