Skip to main content

Wiener type SOM-and MLP-Classifiers for recognition of dynamic modes

  • Part VII: Prediction, Forecasting, and Monitoring
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

A recognition method modified from the classical Wiener-model is introduced, which recognizes the dynamic modes of an industrial process automatically on-line on the basis of the measurement information available. The dynamical linear part is based on Laguerre systems for all inputs. The values of the Laguerre system outputs contain information about the dynamic behaviour of the input signals in the near past. The static nonlinear mapping is realized with a MLP and a Kohonen's SOM, which map the “behaviour” to a unique binary code for each functional state i.e. dynamic mode. It is applied to the B. subtilis batch fermentation producing alpha-amylase to recognize the five functional states of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Schetzen: The Volterra and Wiener Theories of Nonlinear Systems, John Wiley & Sons, 1980. 531 p.

    Google Scholar 

  2. N. Wiener. Nonlinear problems in random theory. The Technology Press, MIT and John Wiley & Sons Inc. New York, 1958.

    Google Scholar 

  3. A. Back & A.C. Tsoi: Identification of nonlinear processes using Laguerre functions. Proceedings of EANN'95, Otaniemi, 21–23 August 1995, Finland.

    Google Scholar 

  4. G. Schram, M.G.H. Verhaegen & A.J. Krijgsman: System Identification with orthogonal basis functions and neural networks. Preprints of the 13th IFAC World Congress, San Fransisco, USA, 30th June–5th July 1996, Volume I pages 221–226

    Google Scholar 

  5. A. Visala & A. Halme: Qaulity Assurance in Bioprocesses by Model Based Fault Diagnosis and State Estimation. Preprints of the 13th IFAC World Congress, San Fransisco, USA, 30th June–5th July 1996, Volume N pages 425–430.

    Google Scholar 

  6. A. Halme: Generalized Polynomial Operators for Nonlinear Systems Analysis. Acta Polytechnica Scandinavica Ma 24, Helsinki, 1972.

    Google Scholar 

  7. T. Kohonen: Self-Organization and Associative Memory, Springer Verlag, 1984.

    Google Scholar 

  8. B. Wahlberg & P. M. Mákilä: On approximation of stable linear dynamical systems using Laguerre and Kautz functions, Automatica, Vol 32, No 5, 1995, pp 693–708.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Visala, A., Pitkänen, H., Halme, A. (1997). Wiener type SOM-and MLP-Classifiers for recognition of dynamic modes. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020295

Download citation

  • DOI: https://doi.org/10.1007/BFb0020295

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics