Skip to main content

Neural network adaptive modeling of battery discharge behavior

  • Part VII: Prediction, Forecasting, and Monitoring
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

Dynamic processes are often influenced by external conditions. We expand the neural network approximation capability to behavior modeling within an original hierarchical master-slave relation. Unlike the control theory paradigm, neural weights will replace “state variables” that may be impossible to measure. An application aiming at predicting the end of discharge for rechargeable batteries is fully described. This new battery management tool leads to accurate predictions (mean error is about 3 %) and its implementation into a portable equipment demonstrates that neural networks could be useful even for small size products. The system is further improved by on-line adaptation to actual conditions and individual behavior. This improvement reduces the error prediction to a low 1.5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Gérard and J. N. Patillon. Une procédure d'optimisation des pentes dans un réseau de neurones. VALGO, 96(1), 1996.

    Google Scholar 

  2. O. Gérard, J.N. Patillon, and F. d'Alché Buc. Discharge prediction of rechargeable batteries with neural network. International Journal of Integrated Computer-Aided Engineering, 1997. to appear.

    Google Scholar 

  3. K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal estimators. Neural Networks, 2:359–366, 1989.

    Google Scholar 

  4. A. Lapedes and Farber. Programming a massively parallel, computation universal system: Static behavior. In J.S. Denker, editor, Snowbird 1986, pages 283–298. American Institute of Physics, New York, 1986.

    Google Scholar 

  5. D. Linden, editor. Handbook of batteries. McGraw-Hill, NY, 1995.

    Google Scholar 

  6. J.-N. Patillon, O. Gérard, F. d'Alché Buc, S. Gourrier, and J.-P. NadaL Smart battery management. 1995 LEP Annual Review, pages 52–54, 1996.

    Google Scholar 

  7. N. Pican. Intrinsic and parallel performances of the OWE neural network architecture. In ICANN'96, pages 755–760, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gérard, O., Patillon, JN., d'Alché-Buc, F. (1997). Neural network adaptive modeling of battery discharge behavior. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020299

Download citation

  • DOI: https://doi.org/10.1007/BFb0020299

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics