Skip to main content

Mapping of soil contamination by using artificial neural networks and multivariate geostatistics

  • Part VII: Prediction, Forecasting, and Monitoring
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

The work deals with the development and use of mixed models (artificial neural networks-ANN and modern geostatistical models) for the analysis of spatially distributed environmental data. When multivariate data have complex non-linear trends or high variability at different scales in the region of study it is proposed to use ANN to model non-linear large scale structures (trends) and then to apply multivariate geostatistics (co-kriging models) to the residuals. The proposed model is used for the spatial prediction of soil contamination by Chernobyl radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wackernagel H. (1995) Multivariate Geostatistics. Springer Verlag, Berlin Heidelberg, 256 p.

    Google Scholar 

  2. Deutsch C.V. and Journel A. G. (1992) GSLIB: Geostatistical Software Library and User's Guide. New York, Oxford University Press. 340 p.

    Google Scholar 

  3. Dowd P. A. (1994) The Use of Neural Networks for Spatial Simulation. In R. Dimitrakopoulos (Ed.) Geostatistics for the next century, Kluwer Academic Publishers, pp. 173–184.

    Google Scholar 

  4. Dowla F.U. and Rogers L.L. (1995) Solving Problems in Environmental Engineering and Geosciences with Artificial Neural Networks. The MIT Press, Cambridge, Massachusetts, 239 p.

    Google Scholar 

  5. Kanevsky M. (1994) Artificial Neural Networks and Spatial Interpolations. Case Study: Chernobyl Fallout. Preprint IBRAE-95-07, 39 p.

    Google Scholar 

  6. Kanevsky M., Arutyunyan R., Bolshov L., Demianov V., and Maignan M. (1996) Artificial Neural Networks and Spatial Estimation of Chernobyl Fallout. Geoinformatics, vol.7, Nos. 1–2, pp.5–11.

    Google Scholar 

  7. Haykin S. (1994) Neural Networks. A comprehensive Foundation. New York, Macmillan College Publishing Co., 696 p.

    Google Scholar 

  8. Masters T. (1993) Practical Neural Network Recipes in C++. Academic Press, 493 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanevski, M., Demyanov, V., Maignan, M. (1997). Mapping of soil contamination by using artificial neural networks and multivariate geostatistics. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020304

Download citation

  • DOI: https://doi.org/10.1007/BFb0020304

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics