Skip to main content

Pseudo-resistive networks and their applications to analog collective computation

  • Part VIII: Implementations
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

The basic concept of using a standard MOS transistor as a pseudoconductance is explained. It offers the possibility to implement any network of linear resistors by means of transistors only, and to control the value of each of these pseudo-resistors by a voltage or a current. Applications to linear attenuation, moment computation, diffusion networks, fuzzy logic computation and emulation of physical media are described. Several examples are given, including D/A conversion, elementary shape recognition, path-finding, place coding and emulation of biological organs such as the retina and th cochlea.e

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.Vittoz, “Analog VLSI signal processing: why, where, and how”, Journal of VLSI Signal Processing, Vol. 8, pp.27–44, 1994.

    Google Scholar 

  2. E.Vittoz, “Micropower Techniques”, in Design of VLSI Circuits for Telecommunication and Signal Processing, Editors J. Franca and Y. Tsividis, Prentice Hall, Englewood Cliffs, 1994.

    Google Scholar 

  3. E.Vittoz and X.Arreguit, “Linear networks based on transistors”, Electronics Letters, vol. 29, pp.297–299, Fehr. 4th, 1993.

    Google Scholar 

  4. K.Bult and G.Geelen, “A inherently linear and compact MOST-only current division technique”, Dig. ISSCC Tech. Papers, February 1992, pp.198–199.

    Google Scholar 

  5. K.W.Boahen and A.G.Andreou, “A contrast sensitive silicon retina with reciprocal synapses”, Advances in Neural Information Processing Systems, Vol.4, pp.764–772, Morgan Kaufmann Publishers, San Mateo, 1992.

    Google Scholar 

  6. B.Gilbert, “Translinear circuits: a proposed classification”, Electron. Letters, vol.11, p.14, 1975.

    Google Scholar 

  7. P.Venier et al.,“Analog CMOS photosensitive array for solar illumination monitoring”, ISSCC'96 Dig. Tech. Paper, pp.96–97, San Francisco, 1996.

    Google Scholar 

  8. B.K.P.Horn, “Parallel networks for machine vision”, The Artificial Intelligence Lab., M.I.T, Cambridge, MA, A.I. Memo No. 1071, Dec. 1988.

    Google Scholar 

  9. D.L.Standley, “An object position and orientation IC with embedded imager”, IEEE J. Solid-State Circuits, vol.26, pp.1853–1859, December 1991.

    Google Scholar 

  10. C.A.Mead, Analog VLSI and neural systems, Addison-Wesley, Reading, 1989.

    Google Scholar 

  11. C.A.Mead and M.A.Mahowald, “A silicon model of early visual processing”, Neural Networks, voll, pp.91–97, 1988.

    Google Scholar 

  12. P.Venier, “A contrast sensitive silicon retina based on conductance modulation in a diffusion network”, MicroNeuro'97, Dresden.

    Google Scholar 

  13. E.Vittoz et al.,“Analog VLSI implementation of a Kohonen map”, Dig. of the Journées d'Electronique 1989 on Artificial Neural Networks, EPF-Lausanne, pp.291–301.

    Google Scholar 

  14. P.Heim et al., “Generation of Learning Neighborhood in Kohonen Feature Maps by means of Simple Nonlinear network”, Electronics Letters, vol.27, No 3, pp.275–277, 1991.

    Google Scholar 

  15. A.Mortara and E.Vittoz, “A communication architecture tailored for analog VLSI artificial neural networks: intrinsic performance and limitations”, IEEE Trans. on Neural Networks, Vol. 5, pp.459–466, May 1994.

    Google Scholar 

  16. P.Venier et al., “An integrated cortical layer for orientation enhancement”, IEEE J. Solid-State Circuits, vol. 32, pp.177–186, Febr. 1997.

    Google Scholar 

  17. O.Landolt, “Low-power analog fuzzy rule implementation based on a linear transistor network”, Proc. MicroNeuro'96, pp. 86–93, Lausanne, 1996.

    Google Scholar 

  18. T.Delbriick,“Bump circuits for computing similarity and dissimilarity of analog voltages”, Proc. of International Joint Conference on Neural Networks, vol1, pp.475–479, 1991.

    Google Scholar 

  19. O.Landolt, “Place coding in analog VLSI and its application to the control of a light deflection system”, MicroNeuro'97, Dresden. [20] L.Tarassenko et al., “Real-time autonomous robot navigation using VLSI neural networks”, in Advances in Neural Information Processing Systems, vol.3, R.P.Lippmann, J.E.Moody and D.S.Touretzky (editors), pp.422–428, Morgan Kaufmann, 1991.

    Google Scholar 

  20. S.Scotzniovsky, “Détection de chemin dans un environnement avec obstacles”, Travail de Diplôme EPF-Lausanne, 1995 (in French).

    Google Scholar 

  21. L.Watts et al.,“A bidirectional analog VLSI cochlear model”, in Advanced Research in VLSI, Proc. of the 1991 Santa Cruz Conference, M.I.T.Press, Cambridge, MA, pp. 153–163.

    Google Scholar 

  22. C.Enz et al., Low-voltage log-domain signal processing in CMOS and BiCMOS”, ISCAS'97, Hong Kong.

    Google Scholar 

  23. R.Fried et al.,“On chip transient stability simulator 104 times faster than real time”Dig. 2nd Int. Conf. on Digital Power System Simulators-ICDS'97, Montréal, pp.79–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vittoz, E.A. (1997). Pseudo-resistive networks and their applications to analog collective computation. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020305

Download citation

  • DOI: https://doi.org/10.1007/BFb0020305

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics