Skip to main content

Implementation of CNN computing technology

  • Part VIII: Implementations
  • Conference paper
  • First Online:
Artificial Neural Networks — ICANN'97 (ICANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1327))

Included in the following conference series:

Abstract

The various physical implementations of the CNN Universal Machine architecture (analogic and digital VLSI, optical, optoelectronic) make the CNN paradigm a practically important new area of computing. For the VLSI implementations, application and prototyping systems have been developed. The new CNN algorithms can be programmed via a high level language, hence, their use does not require special skill of understanding the details. This language and compiler is embedded in the usual digital microprocessor or Personal Computer/Workstation environment. Some real life applications have already been developed, including a mammogram diagnostic system, a microscopy toolkit for chromosome analysis, intelligent multifunction fax machines, some video compression algorithms, etc. A new device, called the CNN Visual Mouse was also designed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.O.Chua and L.Yang, “Cellular neural networks: Theory”, “Cellular neural networks: Applications”, IEEE Transactions on Circuits and Systems, Vol.35, p.1257–1290, 1988

    Google Scholar 

  2. T. Roska, “Analog events and a dual computing structure using analog and digital circuit and operators”, pp. 225–238 in Discrete Event Systems: Models and Applications (eds. P. Varaiya and A. Kurzhanski), Springer-Verlag, 1988

    Google Scholar 

  3. .O.Chua and T.Roska, “Stability of a class of nonreciprocal cellular neural networks”, IEEE Transactions on Circuits and Systems, Vol.37, pp.15201527, 1990

    Google Scholar 

  4. L.O.Chua and T.Roska, “The CNN Paradigm”, ibid., Part I, Vol. 40, pp. 147–156, 1993

    Google Scholar 

  5. Roska and L.O. Chua, “The CNN Universal Machine: An Analogic Array Computer”, ibid., Part 11, Vol.40, pp. 163–173, 1993.

    Google Scholar 

  6. T.Roska, J.Hamori, E.Labos, K.Lotz, L.Orzo, J.Takacs, P.L.Venetianer, Z.Vidnyanszky and A.Zarandy, “The Use of CNN Models in the Subcortical Visual Pathway”, ibid. Part-1, Vol.40. pp. 182–195, 1993.

    Google Scholar 

  7. F.Werblin, T.Roska, and L.O.Chua, “The analogic Cellular Neural Network as a Bionic Eye”, International J. Circuit Theory and Applications, Vol. 23, pp. 541–569, 1995

    Google Scholar 

  8. .Rodriguez-Vázquez and S.Espejo, “On VLSI design of programmable CNNs”, Proc. IEEE ISCAS'94, Vol.6, pp.292 1997.

    Google Scholar 

  9. L.O.Chua, T. Roska, T.Kozek, A.Zarándy, “CNN Universal Chips crank up the computing power”, IEEE Circuits and Devices, pp. 18–28, July, 1996

    Google Scholar 

  10. F.Werblin, A.Jacobs, and J.Teeters, “The computational eye”, IEEE Spectrum, pp.30–37, May 1996

    Google Scholar 

  11. L.O. Chua, T.Roska and P.L. Venetianer, “The CNN is universal as the Turing machine”, IEEE Trans. Circuits and Systems-I, Vo1.40. No.4. pp. 289–291, April 1993.

    Google Scholar 

  12. T.Roska, C.W.Wu, M.Balsi and L.O.Chua, “Stability and Dynamics of Delay-type and Nonlinear Cellular Neural Networks”, U.C.Berkeley, ERL Memo M91 / 110, Nov, 1991.

    Google Scholar 

  13. T. Kozek, T. Roska and L.O. Chua, “Genetic algorithm for CNN template learning”, IEEE Trans. Circuits and Systems-I, Vol.40.No.6. pp. 392402, June 1992.

    Google Scholar 

  14. CNN Application Development Environment and Toolkit (CADET), System Description, MTA SzTAKI, Budapest, 1996

    Google Scholar 

  15. CNN Chip Prototyping System (CCPS), System Description, MTA SzTAKI, Budapest, 1996

    Google Scholar 

  16. T. Roska, L.O.Chua, and Á.Zarándy, “Language, compiler, and operating system for the CNN Supercomputer”, Report, UCB/ERL M93/94, Electronics Research Laboratory, U.C. Berkeley, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wulfram Gerstner Alain Germond Martin Hasler Jean-Daniel Nicoud

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roska, T. (1997). Implementation of CNN computing technology. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020306

Download citation

  • DOI: https://doi.org/10.1007/BFb0020306

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63631-1

  • Online ISBN: 978-3-540-69620-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics