Abstract
We present the implementation of on-line Hebbian learning for NESPINN, the Neurocomputer for the simulation of spiking neurons. In order to support various forms of Hebbian learning we developed a programmable weight unit for the NESPINN-system. On-line weight modifications are performed event-controlled in parallel to the computation of basic neuron functions. According to our VHDL-simulations, the system will offer a performance of up to 50 MCUPS.
Preview
Unable to display preview. Download preview PDF.
References
A. Jahnke, U. Roth, H. Klar: “A SIMD/Dataflow Architecture for a Neurocomputer for Spike-Processing Neural Networks (NESPINN)”, MicroNeuro'96, 232–237,1996.
G. Frank, G. Hartmann, “An artificial Neural Network Accelerator for Puls-coded Modelneurons”, ICNN'95, 1995.
M.Rossmann, Vost, K.Goser, A,Buehlmeier, G.Manteuffel,“Exponential Hebbian On-Line Learning Implemented in FPGAs”, ICANN'96, pp. 767–772,1996.
B.Ruf, M.Schmitt,“Learning Temporally Encoded Patterns in Networks of Spiking Neurons”, IWANN'97, in press.
P. Koenig, W. Schillen, “Stimulus-dependent assembly formation of oscillatory responses: III.Learning”, in Neural Computation, 4: 666–681, 1992.
O. Sporns, G. Tononi, G. M. Edelman, “Modelling perceptual grouping and figure-ground segregation by means of active reentrant connections”, Proc. Mad. Acad. Sci. USA, 88: 129–133,1991.
C. von der Malsburg, W. Schneider, “A neural cocktail-party processor”, Biol. Cybern. 54: 29–40,1986.
R. Eckhom, H. J. Reitboeck, M. Arndt, P. Dicke, “Feature linking via stimulus-evoked oscillations: Experimental results from cat visual cortex and functional implication from a network model”, Proc. ICNN I: 723–730, 1989.
W. Gerstner, R. Ritz, J. L. van Hemmen, “A biologically motivated and analytically soluble model of collective oscillations in the cortex”, Biol. Cybern. 68: 363–374, 1993.
K.D. Miller and D.J.C. MacKay, “The Role of Constraints in Hebbian Learning”, Neural Computation 6(1), 100–126, 1994.
L. Watts, “Event-Driven Simulation of Networks of Spiking Neurons”, Advances in Neural Information Processing Systems 6: 927–934,1994.
J. Lazarro, J. Wawrzynek, “Silicon Auditory Processors as Computer Peripherals”, Advances in Neural Information Processing Systems 5: 820–827, 1993.
A. Jahnke, U. Roth, H. Klar, “Towards Efficient Hardware for Spike-Processing Neural Networks”,. World Congress on Neural Networks, 460–463, 1995.
A Jahnke, T. Schoenauer, U. Roth, K. Mohraz,H. Klar, “Simulation of Spiking Neural Networks on Different Hardware Platforms”, ICANN'97.
U. Roth, F.Eckardt, A.Jahnke, H.Klar,“Efficient On-Line Computation of Connectivity: Architecture of the Connection Unit of NESPINN”, submitted to MicroNeuro `97.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Roth, U., Jahnke, A., Klar, H. (1997). On-line Hebbian learning for spiking neurons: Architecture of the weight-unit of NESPINN. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, JD. (eds) Artificial Neural Networks — ICANN'97. ICANN 1997. Lecture Notes in Computer Science, vol 1327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020317
Download citation
DOI: https://doi.org/10.1007/BFb0020317
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63631-1
Online ISBN: 978-3-540-69620-9
eBook Packages: Springer Book Archive