
'2. 0 ' I
1

Parallel computing in Quantum Chemistry - message
passing and beyond for a general ab initio program system

Hans Lischka and Holger Dachsel
Institut f3ir Theoretische Chemie und Strahlenchemie, University of Vienna, Austria
Ron Shepard
Argonne National Laboratory, Argonne, Illinois
and
Roben J. Harrison
Pacific Northwest Laboratory, RichIand, Washington

1. lntroduction
One of the most prominent aims in Computational Chemistry is the modeling of
chemical reactions and the prediction of molecular properties. Quantum chemical
methods are used for the calculation of molecular structures, spectra, reaction energy
profiles and many other interesting quantities. Nowadays, the accuracy of the
theoretical dculations can compete to an increasing extent with the experimental
one. Therefore, theoretical methods have become a very useful tool for the solution of
many realistic chemical quesaons. The just described capabilities are not only of
pure academic interest Quantum chemicaI methods are also well established in the
research laboratories of the chemical indusuy. There. they are used suCceSSfuUy for
many routine applications. However. what is much more imponam they provide a
detailed source of information which helps in a better understanding of chemical
processes - a knowledge which is crucial for a directed development of new classes of
chemical compounds and materials. AI of the computational methods used are
extremely time consuming and rely heavily on the availablity of sufficient computer
power. Parallel computing is the only way to open new dimensions in the field of the
computer simulation of molecules.
A great variety of quantum chemical methods exist ranging from the standard
Hamee-Fock theory to sophisticated electron correlation approaches. From ' a
computational point of view all these methods require rather lengthy and
complicated program codes (ten thousands to several hundreds of thousands of lines)
and have to handle a large amount of data to be stored on external devices. In the
simplest case. the Hamee-Fock (SCF) method, "direct" algorithms have eliminated
the UO and storage bottleneck and have opened the way to paralie1 implementations.
For post-Harnee-Fock methods the situation is much more complicated as will be
demonstrated below, Therefore. most of the previous atfempts in parallelizing
quantum chemical ab initio programs concentrated on SCF methods.
Starting with the pioneering work by CIementi and coworkers on "loosely mupied
array of processors (LCAP)" [l] several investigations on the parallelhion of SCF
programs have been reported 12-11]. In addition, electron comiation methods based
on Maller-Plesset Second Order Pernubation Theory 1121, Coupled-Cluster theory
[13,14] and fuil CI [I5161 have been considered as weil. For reviews on the use
massively parallel computers in Quantwn Chemistry see e.g. (17.181.

DISCLAIMER

This report w a s prepared a s an account of work sponsored
by an agency of the United States Government. Neither t h e
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for t he
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of t h e United States Government or

, any agency thereof.

DfSCLAlMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

I

Our investigations presented here are a continuation of our previous work 1191 on the
the paralleiization of the COLUMBUS program system I20.211. The COLUMBUS
program is based on the multireference single- and doubleexcitarion configuration
interaction (MRSDCD approach. is very well portable and runs on a large variety of
computers including numeious Unix-based workstations. VAXNMS minicomputers,
IBM mainframes and Cray supercomputers.
2. Quantum Chemical Methods
In the configuration interaction method (see e.g. [Z]) the Ritz variation principle is
used to solve the molecular Scbrodinger equation

HY=m (1)
where H is the Hamiltonian operator describing the molecular system, Y is a many-
electron wave function and E is the molecular energy. Expansion of Y into a hear
combination of configuration state functions (CSFs)

,

-
Y=Zc&

i
I and application of the variation principle leads to the following matrix eigenvalue

problem .

H is the matrix represention of the Hamiitonian H in the basis of the CSFs, the
vector c collects the coefficients ci of Eq. (1) and is an approximation to the exact
energy E. The many-eiecuon functions Yi are constructed from one-elctron functions
(molecular orbitals. MOs) Qj according to the Pauli principle. The MOs in turn are
expanded into a fured basis xI (atomic orbitals. AOs) as

H c = Bc. (3)

&j = cd,x , . (4)
k

The actual choice of CSFs and basis sets has a long tradition in Quantum Chemistry
and need not be discussed here. In MRCI wave functions. the dimension of the
matrix eigenvalue problem in Eq. (3) can easily reach hundreds of thousands or
several millions. Because of the properties of the Hamiltonian operaror the
Hamiltonian matrix H is sparse. Without going into details. the following main steps
have to be executed calculation of one- and two-electron ink-ds in the atomic
orbiral (AO) basis, calculation of molecular orbitals (MOs) by means of a SCF or
MCSCF procedure. transionnation of the A 0 inte-ds to the MO basis and solution
of the aforementioned eigenvalue problem. The 1 s t step is the most complicated and
in many cases also by far the most time consuming one. For this reason we
concentrated on it even though it is clear that. fmally, all the aforementioned
computational steps have to be parallelized.
In most cases one is only interested in a few of the lowest eigenvalues and
eigenvectors in Eq. (3). They are usually obtained by a subspace expansion into a set
of vial vectors according to Davidson [23]. In this method the eigenvector c is
approximated by a vector u which is expanded into a linear combination of
correction vectors vi

U = L,., (5)
I 4

'I

N is the dimension of the subspace and the expansion coeificients ai are determined
from the smal l eigenvalue problem ga=za where gij = vfHv,. From the
residuum r =(H - g)u a new expansion vector V,,,+l is computed (for deraits see
[23]) and an improved approximation u according to (5) is determined. This
iteration scheme is completed until a cerrain conversence limit is reached. The most
time consuming step is the calculation of the matrix-vector product

w, = Hv,. (6)
Because of the aforementioned sparsity of the matrix H the Hamiitonian matrix
times vector product in Eq. (6) can be split into a series of dense mauk operatons in
such a way that H is never constructed explicitly (direct CI). The dense maaices are,
however, of the dimension of the MO basis only (Le. up to a few hundred at most).
We use densemanix product kernels (e.g. BLASO) routines [24]) which have
proven to be very efficient on vector and scalar pipelined computers. In this way
efficiency and porrabiiity are achieved to a very large degree. The computational step
shown in Eq. (6) is not only important in terns of CPU time but also because large
amounts of data (two-electron inte_&) have to be processed and because the whole
logic of the computation of the respective conmbutions to H (formula tape) has to be
done here.
3. Parallel algorithm
3.1. General considerations
Our strategy for parallelhion was strongiy ,gided by portability considexations. We
wanted to have a program system which should work efficiently on shared memory
and on distributed memory machines inciuding workstation clusters as well. From
the aforemenaoned small size of the dense matrices an attempt to p d e l i z e at this
matrix level was not very amacuve. After analyzing various choices we decided for
coarse grain parallelkmion at the topmost level in our program [19]. In order to do
this, v and w are split into segments. The multiplication of the symmemc manix H
times the vector v (Eq. (6)) was originally written in our sequential p m _ m as loops
over segments pairs in the following way:

DO SEG1= 1 , NSEG
READ vSEG7 t wS€G7
DO SEG2 = 1 , SEGl

READ vSfG? 1 wSEG2
UPDATE W,EEGI, W S E ~

WRITE W S E ~
ENDDO

WRITE WsEGl
ENDDO

The actual work - not shown in this scheme - is done in the routine UPDATE. Also
not shown is the handlins of the case SEGl = SEG:! and various other special uses.
In the parailel program the same loop structure as in the sequential case is used. To
each process work for updating one segment pair is passed at a time and load

.

balancing is used to dismbute the work evenly over all proces~es. The advantage of
this scheme is that the routine UPDATE which comprises most of the total program
code remains completely intact Thus. we can st i l l use the optimized dense matrix
multipiidon routines and it will be straightforward to make use of any further
improvements which will be made in the sequential program. For this scheme
message passing is adequate and straightforward to implement The actual
implementation is performed via the portable programming toolkit TCGMSG
developed by one of us 0 [Z]. TCGMSG supplies a set of Foraan and C callable
library routines by which message passing can be introduced into the application
program code. A Single Program Multiple Data approach is used.

32. First impiementations
In our first implementation 1191 only the sparse marrix veuor veuor product of Eq.
(6) was parallelized. The vector v was kept on disk as one single file shared by all
processes. Local copies of the update vector w were held for each process and were
added up via a global sum operation after completion of the loop over all segment
pairs. The Davidson step was not parallelized at all. This version was installed on a
variety of parallel computers like the Alliant FX/2800. the CRAY Y-MP, the Convex
C2 and the Intel iPSC/860. The program worked very well on the Alliant, CRAY
and Convex, E.g., on a dedicated 8 processor CRAY Y-Mp roughly one GFLOP per
wall clock second was achieved. On the iPSc1860 a serious degradation in
performance was observed already with 7 processors due to the SIOW data transfer
rate to and from disk.
In any case, we could show that our overall approach of defining tasks by
se-menting the v and w vectors was successful. Thus. in the next step effons were
made to reduce the I/O while changing the basic outline of the program as little as
possible. This goal was achieved by introducing two features: a) the concept of a
local virtual disk and b) by developing a data compression scheme for the v and w
vectors. The virtual disk gave us a flexible tool to store files in the local central
memory of each processor. By means of the data compression the size of the v and w
vectors were reduced by factors of four to five. Obviously, best results couid be
achieved when all data could be kept in core.
This second program version was tested on the Intel Touchstone Delta and and the
IBM SP1. Now, the performance was very good for up to about 32 processors.
Almost 100% efficiency could be achieved for the %.v step. However, we st i l l had
the bottleneck to dismbute the v vector for each iteration to all processors and to
perform a global sum for w at the end of each iteration. Also, the Davidson iterauon
was st i l l not pm*ormed in parallel. From our experience gained so far it was clear
that we needed more flexibility in the data organization. For larger caiculations we
could not keep identical copies of all files in the memory of each processor as would
have been necssaxy for an o p W calculation. What we needed was the possibility
to disuibute the contents of a iile globally over the memory of all processors and to
allow all compute processes asynchronous access to these data Again, as it has
already been stressed above, portability was a crucial requirement for such software
tools.

3.3. GIobal arrays
The global-my took [26] which we were using can be characterized in the
following way: these tools support one-sided access to data structures (here limited to
one- and two-dimensional arrays) in the spirit of shared memory. With some effon
this can be done porlably, and in return for this investment we gain a much easier
programming environment speeding code development and improving extensibility
and maintainability. We also gain a significant performance enhancement from
increased asynchrony of execution of processes. The took efficiently support both
task and data parallelism.
By means of the global-my took all major fifes (v and w, two-electron integrals)
were now stored as a single copy. In particular, reading of the Y v w r and
accumuiating the conmbutions to the w vector could be done asynchronously by the
different processes as needed. No overaU distribution step at the beginning of an
iteration and no collection of results at the end of each itemuon is necessary
anymore. It was also straightforward to paralleke the Davidson procedure.

3.4. Benchmark calculations
At present, the program works on the Intel Touchstone Delta and on the IBM SP1.
Benchmark tests (see below) were taken on the Delta. those on the SP1 will follow
shortly. As test example we used a C2,-pvrZ calculation on the CH3 molecule as
given in N1 detail in Ref. [19]. The dimension of the CI expansion is 624 334 CSFs.
The number of segments was held constant at 24 giving 481 s e p e n t pairs
(including subdivisions of certain pair typesj in total. Calculations with up to 112
processors were performed.
In Fig. 1 for one typical iteration the speedup with the number of processors is shown
a d compared to the theoretical value.

5

4.5
4

3.5

3

25

2

1.5

1

+rnmsured

The results are very satisfactoxy up to about 64 processors and then start to
deteriorate. Beginning with 96 processors there is no increase in the Speedup
aymore. The main reason for this rerardation is the fact that the load balancing

mechanism is not so efficient anymory because only a few segment pairs are
available for each processor. Moreover. also other evenrs which were not relevant
before now increase in relative importance.

4. Conclusions and outlook
We regard it as a great success that we can run the CI section of the COLUMBUS
program system - which incorporates a l l the complexity of the MRSDCI method -
efficiently on a distributed memory system like the Delta Investigations on the SPl
machine are in progress. Our next main step will be the introduction of a "double
direct-' approach which avoids the storage and sorting of the 3- and llexternal two-
electron integrals. A sequential. A 0 driven code is already available [27]. We are
contident that with this new features included we will be able to r& our program
efficiently on several hundred processors.

Acknowledgments
This work was performed under the auspices of the Austrian "Fonds zu Forderung
der wissenschaftlichen Forschung", project nr. BO32 and the High Performance
Computing and Communication Program of the Office of Scientific Computing, U.S.
Depamnent of Energy. The calculationsl on the Intel Touchstone Delta were
performed at the CCSF at Caltech. those on the IBM SPl at the AQRF of the
Argonne National Laboratory. We are -grateful for the competent support of our work
by these computer centers.

References

1 E. Clementi. in Modern Techniques in Compuraional Chemisny, chap. 1.
E. Clementi. Ed.. Escom Science Publishers. 1990: D. Folsom. in Modem
Techniques in Compurarional Cliemisrty, chap. 27, E. Clementi, Ed., Escom
Science Publishers. 1990

2 M. Dupuis and J. D. Watts. Theor. Chim. Acta 71 (1987) 91
3 R. J. Harrison and R. A. Kendall. Theor. Chim. Acta 79 (1991) 337
4 H. P. Luthi. J. E. Mertz. M. W. Feyereisen and J. E. Almiof. J. Comp. Chem.
13 (1992) 160

5 S. Kindennann. E. Michel and P. Otto. J. Comp. Chem. 13 (1992) 414
6 M. W. Feyereisen. R. A. Kendall. J. Nichols, D. Dame and J. T. Golab.

J. Comp. Chem. 14 (1993) 818
7 S. Brode. H. Horn. M. Ehrig, D. Moldrup, J. E. Rice and R. Ahlrichs, J. Comp.

Chem. 14 (1993) 1142
8 M. W. Schmidt. K. K. BaIdridge, J. A. Boatz. S. T. Elben; M. S. Gordon.

J. H. Jensen. S. Koseki. N. Matsuqa , K. A. Nguyen, S. Su. T. L. Windus.
IM. Dupuis and J. A. Montgomery. Jr., J. Comp. Chem. 14 (1993) 1347

9 M. E. Coivin. C. L. Janssen, R. A. Whiteside and C. H. Tong, Theor. Chim.
Acta84 (1993) 301

10 L. G. M. Petterson and T. Faxen. Theor. Chim. Acta 85 (1993) 345
1 I A. Burkhardt. U. Wedig and H. G. v. Schnering. Theor. Chim. Acta 86 (1993)

497
12 J. D. Watts and M. Dupuis. J. Comp. Chemistry 9 (1988) 158

