ANk |CHM| CP--86(11
(o QYo30/--4§

Paralilel computing in Quantum Chemisiry - message
passing and beyond for a general ab initio program system

Hans Lischka and Holger Dachsei

Institut fiir Theoretische Chemie und Strahienchemie, University of Vienna, Austria
Ron Shepard

Argonne National Laboratory, Argonne, IHinois

and

Robert J. Harrison

Pacific Northwest Laboratory, Richland, Washington

1. Introduction

One of the most prominent aims in Computational Chemistry is the modeling of
chemical reactions and the prediction of molecular properties. Quantum chemical
methods are used for the calculation of molecular structures, spectra, reaction energy
profiles and many other interesting quantities. Nowadays, the accuracy of the
theoretical calculations can compete t0 an increasing extent with the experimental
one. Therefore, theoretical methods have become a very useful tool for the solution of
many realistic chemical questions. The just described capabilities are not only of
pure academic interest. Quantum chemical methods are aiso well established in the
research laboratories of the chemical industry. There, they are used successfully for
many routine applications. However. what is much more important, they provide a
detailed source of information which helps in a better understanding of chemical
processes - a knowledge which is crucial for a directed development of new classes of
chemical compounds and materals. All of the computational metbods used are
extremely time consuming and rely heavily on the availablity of sufficient computer
power. Parallel computing is the only way to open new dimensions in the field of the
computer simulation of molecules.

A great variety of quanmum chemical methods exist ranging from the standard
Hartree-Fock theory to sophisticated electron correlation approaches. From a
computational point of view all these methods require rather lengthy and
compliicated program codes (ten thousands to several hundreds of thousands of lines)
and have to handle a large amount of data to be stored on external devices. In the
simplest case, the Hartree-Fock (SCF) method, “"direct” algorithms have eliminated
the /O and storage bottleneck and have opened the way to parallel implementations.
For post-Harree-Fock methods the situation is much more complicated as will be
demonstrated below. Therefore, most of the previous attempts in parallelizing
quantum chemical ab initio programs concentrated on SCF methods.

Starting with the pioneering work by Clement and coworkers on "loosely coupled
array of processors (LCAP)" [1] several investigations on the parallelization of SCF
programs have been reported {2-11]. In addition, electron correlation methods based
on Mgller-Plesset Second Order Perturbation Theory {12], Coupled-Cluster theory
(13,14] and fuil CI {15.16] have been considered as well. For reviews on the use
massively parallel computers in Quantum Chemistry see e.g. [17,18].

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLM

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Our investigations presented here are a continuation of our previous work [19] on the
the parailelization of the COLUMBUS program system [20,21]. The COLUMBUS
program is based on the muitireference single- and double-excitation configuration
interaction (MRSDCI) approach. is very well portable and runs on a large variety of
computers including numerous Unix-based workstations. VAX/VMS minicomputers,
IBM mainframes and Cray supercomputers.

2. Quantum Chemical Methods
In the configuration interaction method (see e.g. [22]) the Ritz variation principle is
used to solve the molecular Schrédinger equation .
HY=EY¥ ’ I
where H is the Hamiltonian operator describing the molecuiar system, ¥ is a many-

electron wave function and £ is the moiecular energy. Expansion of ¥ into a linear
combination of configuration state functions (CSFs) '

w=Dc¥,. @

and application of the variation principle leads to the following matrix eigenvalue
problem .
 He=Ee. ' 3)
H is the matrix represention of the Hamiltonian H in the basis of the CSFs, the
vector ¢ collects the coefficients c; of Eq. (1) and Eisan approximation to the exact
energy E. The many-electron functions ¥; are constructed from one-elctron functions
(molecular orbitals, MOs) ®; according to the Pauli principle. The MO:s in turn are
expanded into a fixed basis ¥, (atomic orbitals. AOs) as
D =2d7, @)
k
" The actual choice of CSFs and basis sets has a long tradition in Quantum Chemistry
and need not be discussed here. In MRCI wave functons. the dimension of the
matrix eigenvalue problem in Eq. (3) can easily reach hundreds of thousands or
several millions. Because of the properies of the Hamiltonian operator the
Hamiltonian matrix H is sparse. Without going into details. the following main steps
have to be executed: calculation of one- and two-electron integrals in the atomic
orbital (AQ) basis, calculation of molecular orbitals (MOs) by means of a SCF or
MCSCF procedure. transformation of the AQO integrals to the MO basis and solution
of the aforementioned eigenvaiue problem. The last step is the most complicated and
in many cases also by far the most time consuming one. For this reason we
concentrated on it even though it is clear that. finaily, all the aforementioned
computational steps have to be parailelized.
In most cases one is only interested in a few of the lowest eigenvalues and
eigenvectors in Eq. (3). They are usually obtained by a subspace expansion into a set
of trial vectors according to Davidson [23]. In this method the eigenvector c is
approximated by a vector u which is expanded into a linear combination of

correction vectors v,

u=ialvi ®

1=}

N is the dimension of the subspace and the expansion coefficients o; are determined
from the small eigenvalue problem Ha= Ea where H, = v;Hv,. From the
residuum r=(H~Z Ju a new expansion vector V., is computed (for details see

[23]) and an improved approximation u according to (5) is determined. This
iteration scheme is completed until a certain convergence limit is reached. The most
time consuming step is the calculation of the matrix-vector product
w,=Hv,. (6)

Because of the aforementioned sparsity of the matrix H the Hamiitonian matrix
times vector product in Eq. (6) can be spiit into a series of dense matrix operations in
such a way that H is never constructed explicitly (direct CI). The dense matrices are,
however, of the dimension of the MO basis only (i.e. up to a few hundred at most).
We use dense-matrix product kernels (e.g. BLAS(3) routines [24]) which have
proven to be very efficient on vector and scalar pipelined computers. In this way
efficiency and portability are achieved to a very large degree. The computational step
shown in Eq. (6) is not only important in terms of CPU time but also because large
amounts of data (two-electron integrais) have to be processed and because the whole
logic of the computation of the respective conwibutions to H (formula tape) has to be
done here.

3. Parallel algorithm

3.1. General considerations

Our strategy for parallelization was strongly guided by portability considerations. We
wanted to have a program system which should work efficiently on shared memory
and on distributed memory machines including workstation clusters as well. From
the aforementioned small size of the dense matrices an attempt to paratlelize at this
matrix level was not very atractive. After analyzing various choices we decided for
coarse grain paralielization at the topmost level in our program [19]. In order to do
this. v and w are split into segments. The multiplication of the symmetric matrix H
times the vector v (Eq. (6)) was originally written in our sequential program as loops
over segments pairs in the following way:

DO SEG1 =1, NSEG
READ Vgggy» Wsgar
DO SEG2 =1, SEG1

READ Vsgaz s Wseaz
UPDATE Wegay, Weeas ! Conwibutions from HSEGT, SEG2

and HSEGZ.SEGT Hamiltonian blocks

ENDDO

ENDDO

The actual work - not shown in this scheme - is done in the routine UPDATE. Also
not shown is the handling of the case SEG1 = SEG2 and various other special cases.
In the parallel program the same loop structure as in the sequential case is used. To
each process work for updating one segment pair is passed at a time and load

balancing is used to distribute the work evenly over all processes. The advantage of
this scheme is that the routine UPDATE which comprises most of the total program
code remains compietely intact. Thus, we can still use the optimized dense matrix
multiplication routines and it will be straightforward to make use of any further
improvements which will be made in the sequental program. For this scheme
message passing is adequate and straightforward to impiement. The actual
implementation is performed via the portable programming toolkit TCGMSG
developed by one of us (RTH) [25]. TCGMSG supplies a set of Fortran and C callable
library routines by which message passing can be introduced into the appiication
program code. A Single Program Multiple Data approach is used.

3.2. First implementations

In our first implementation {19] only the sparse martrix vector vector product of Eq.
(6) was parallelized. The vector v was kept on disk as one single file shared by all
processes. Local copies of the update vector w were held for each process and were
added up via a global sum operation after completion of the loop over all segment
pairs. The Davidson step was not parallelized at all. This version was installed on a
variety of parallel computers like the Alliant FX/2800. the CRAY Y-MP, the Convex
C2 and the Intel iPSC/860. The program worked very well on the Alliant, CRAY
and Convex. E.g., on a dedicated 8 processor CRAY Y-MP roughly one GFLOP per
wall clock second was achieved. On the iPSC/860 a serious degradation in
performance was observed already with 7 processors due to the slow data transfer
rate to and from disk.

In any case, we could show that our overail approach of defining tasks by
segmenting the v and w vectors was successful. Thus. in the next step efforts were
made to reduce the /O while changing the basic outline of the program as little as
possible. This goal was achieved by introducing two features: a) the concept of a
local virtual disk and b) by developing a data compression scheme for the v and w
vectors. The virtual disk gave us a flexible tool to store files in the local central
memory of each processor. By means of the data compression the size of the v and w
vectors were reduced by factors of four to five. Obviously, best resuits could be
achieved when ail data could be kept in core.

This second program version was tested on the Intel Touchstone Delta and and the
IBM SP1. Now, the performance was very good for up to about 32 processors.
Almost 100% efficiency could be achieved for the H-v step. However, we still bad
the bottleneck to distribute the v vector for each iteration to all processors and to
perform a giobal sum for w at the end of each iteration. Also, the Davidson iteration
was still not performed in paraliel. From our experience gained so far it was clear
that we needed more tlexibility in the data organization. For larger calculations we
could not keep identical copies of all files in the memory of each processor as would
have been necessary for an optimal caicuiation. What we needed was the possibility
to distribute the contents of a file globally over the memory of all processors and to
allow all compute processes asynchronous access to these data. Again, as it has
already been stressed above, portability was a crucial requirement for such software
tools.

3.3. Global arrays

The global-array tools [26] which we were using can be characterized in the
following way: these tools support one-sided access to data structures (here limited to
one- and two-dimensional arrays) in the spirit of shared memory. With some effort
this can be done portably, and in return for this investment we gain a much easier
programming environment, speeding code development and improving extensibility
and maintainability. We also gain a significant performance enhancement from
increased asynchrony of execution of processes. The tools efficiently support both
task and data parallelism.

By means of the global-array tools all major files (v and w, two-electron integrals)
were now stored as a single copy. In particular, reading of the v vector and
accumulating the contributions to the w vector could be done asynchronously by the
different processes as needed. No overail distribution step at the beginning of an
iteration and no collection of results at the end of each iteration is necessary
anymore, It was also straightforward to parallelize the Davidson procedure.

3.4. Benchmark calculations

At present, the program works on the Intel Touchstone Delta and on the IBM SP1.
Benchmark tests (see below) were taken on the Delta. those on the SP1 will follow
shortly. As test example we used a C;,-pVIZ calculation on the CH; molecuie as
given in full detail in Ref. [19]. The dimension of the CI expansion is 624 334 CSFs.
The number of segments was held constant at 24 giving 481 segment pairs
(including subdivisions of cenain pair types) in total. Calculations with up to 112
processors were performed.

In Fig. 1 for one typical iteration the speedup with the number of processors is shown
ind compared to the theoretical value.

- measured
~3—theor.

24 O £6 72 88 104

The results are very satisfactory up to about 64 processors and then start to
deteriorate. Beginning with 96 processors there is no increase in the speedup
nvmore. The main reason for this retardation is the tact that the load balancing

mechanism is not so efficient anymory because only a few segment pairs are
available for each processor. .Moreover. also other events which were not relevant
before now increase in refative importance,

4. Conclusions and outlook

We regard it as a great success that we can run the CI section of the COLUMBUS
program system - which incorporates all the compiexity of the MRSDCI method -
efficienty on a distributed memory system like the Deita. Investigations on the SP1
machine are in progress. Our next main step will be the introduction of a “double
direct™ approach which avoids the storage and sorting of the 3- and 4-external two-
electron integrals. A sequential. AO driven code is already available [27]. We are
confident that with this new features inciuded we will be able to run our program
efficiently on several hundred processors.

Acknowledgments

This work was performed under the auspices of the Austrian “Fonds zur Forderung
der wissenschaftlichen Forschung™, project nr. P9032 and the High Performance
Computing and Communication Program of the Office of Scientific Computing, U.S.
Department of Energy. The calculations. on the Intel Touchstone Delta were
performed at the CCSF at Caltech. those on the IBM SP1 at the ACRF of the
Argonne National Laboratory. We are grateful for the competent support of our work
by these computer centers.

References

1 E. Clementi. in Modern Technigues in Computational Chemistry, chap. 1.
E. Clementi, Ed.. Escom Science Publishers. 1990: D. Folsom, in Modern
Techniques in Computational Chemistry, chap. 27, E. Clement, Ed., Escom
Science Publishers. 1990
M. Dupuis and J. D. Watts. Theor. Chim. Acta 71 (1987) 91
R. J. Harrison and R. A. Kendall. Theor. Chim. Acta 79 (1991) 337
H. P. Liithi. J. E. Mertz. M. W. Feyereisen and J. E. Almiéf. J. Comp. Chem.
13 (1992) 160
S. Kindermann. E. Miche! and P. Otto. J. Comp. Chem. 13 (1992) 414
M. W. Feyereisen. R. A. Kendall. J. Nichols, D. Dame and J. T. Golab.
J. Comp. Chem. 14 (1993) 818
7 S. Brode. H. Hom. M. Ehrig, D. Moldrup, J. E. Rice and R. Ahlrichs, J. Comp.
Chem. 14 (1993) 1142
8 M. W. Schmidt. XK. K. Baldridge, J. A. Boatz. S. T. Elbert. M. S. Gordon.
J. H. Jensen. S. Koseki. N. Matsunaga, K. A. Nguyen, S. Su. T. L. Windus.
M. Dupuis and J. A. Montgomery. Jr., J. Comp. Chem. 14 (1993) 1347
9 M. E. Colvin. C. L. Janssen. R. A. Whiteside and C. H. Tong, Theor. Chim.
Acta 84 (1993) 301
10 L. G. M. Petterson and T. Faxen. Theor. Chim. Acta 85 (1993) 345
11 A. Burkhardr, U. Wedig and H. G. v. Schnering, Theor. Chim. Acta 86 (1993)
497
12 1. D. Watts and M. Dupuis. J. Comp. Chemistry 9 (1988) 158

SN

G\ W

