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Abstract. The growing disparity between processor and memory speeds has caused memory 
bandwidth to become the performance bottleneck for many appfications. In particular, this 
performance gap severely impacts stream-orientated computations such as (de)compression, 
encryption, text searching, and scientific (vector) processing. This paper looks at streaming 
computations and derives analytic upper bounds on the bandwidth attainable from a class of 
access reordering schemes. We compare these bounds to the simulated performance of a 
particular dynamic access ordering scheme, the Stream Memory Controller (SMC). We are 
building the SMC, and where possible we relate our analytic bounds and simulation data to the 
simulation performance of the hardware. The results suggest that the SMC can deliver nearly the 
full attainable bandwidth with relatively modest hardware costs. 

I.  In troduc t ion  

As has become painfully obvious, processor speeds are increasing much faster than 
memory speeds. To illustrate the current problem, a 300 MHz DEC Alpha can perform 
24 inslructions in the time to complete a single memory access to a 40ns DRAM. 

Those programs that are limited more by bandwidth than by latency are particularly 
affected by this growing disparity - -  these include vector (scientific) computations, 
multi-media (de)compression, encryption, signal processing, text searching, etc. 
Caching provides adequate bandwidth for portions of such programs, but not for the 
inner loops that linearly traverse vector-like, "stream" data. Each stream element is 
visited only once during lengthy portions of the computation, and this lack of temporal 
locality makes caching less effective than for other parts of the program. 

In this paper we develop analytic models that bound the performance of any 
uniprocessor or symmetric multiprocessor memory system on streams. We present 
highlights of these results, comparing them to the performance of a scheme we have 
proposed for accessing stream da t a - -  the Stream Memory Controller (SMC) [McK94a, 
McK94b]. There are two independent comparisons: a bus-level simulation, and a gate- 
level simulation of the SMC's VHDL description. Both forms predict the SMC 
consistently delivers nearly the maximum attainable bandwidth determined by the 
analytic bounds. While not reported here, preliminary tests of the actual hardware being 
conducted as this paper is written appear to confirm these results. 

The performance of most memory systems is dependent upon the order of the requests 
presented to it. A multi-bank system, for example, performs better if the accesses 
permits concurrency among the banks. Order matters at an even lower level too: most 
memory devices provide special capabilities that make some access sequences faster 
than others [IEE92,Ram92,Qui91]. For illustration we focus on one such capability, 
fast-page mode. These devices behave as if implemented with a single on-chip cache 
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line, or page. A memory access falling outside the address range of the current page is 
significantly slower than repeating accesses to the current page. Bandwidth can be 
increased by arranging requests to take advantage of such device capabilities. 

Access ordering is any technique that changes the order of memory requests to increase 
bandwidth. Here we are specifically concerned with ordering vector-like stream 
accesses to exploit multi-bank systems using devices with special properties like page- 
mode. In this paper we buttress our previous results with both analytic models and (a 
few) gate-level simulations of the SMC being fabricated. 

We first present the basic SMC architectures for uniprocessor and shared-memory 
multiprocessor systems. We then describe our multiprocessor task-scheduling strategy 
and how it affects memory performance, After explaining the assumptions underlying 
our analytic performance models and discussing the environment for our simulation 
experiments, we correlate the analytic performance curves with simulation results. 

2. T h e  S M C  

There are many ways to approach the bandwidth problem, either in hardware or 
software. For instance, numerous designs of prefetching hardware have been proposed. 
These may prefetch into registers, cache, or special buffers [Bae91,Ca191,Chi94,Fu91, 
Gup91,Jou90,Kla91,Mow92,Sk192,Soh91]. Most of these schemes simply mask 
latency without increasing effective bandwidth. Such techniques are still useful, but 
they will be most effective when combined with complementary technology to take 
advantage of memory component capabilities. 

Software access-ordering techniques range from Moyer's algorithms for non-caching 
register loads [Moy93] to schemes that stream vector data into the cache, explicitly 
managing it as a fast, local memory [Lee93,Los92,Mea92]. Moyer's scheme unrolls 
loops and groups accesses to each stream, so that the cost of each DRAM page-miss can 
be amortized over several references to the same page. Lee develops subroutines to 
mimic Cray instructions on the Intel i860XR [Lee93]. His routine for streaming vector 
elements reads data in blocks (using non-caching load instructions) and then writes the 
data to a pre-allocated portion of cache. Meadows describes a similar scheme for the 
PGI i860 compiler [Mea92], and Loshin and Budge give a general description of the 
technique [Los92]. 

Register-level schemes are restricted by the size of the register file, and cache-level 
schemes potentially suffer from cache conflicts. Moreover, optimal orderings cannot be 
generated without the address alignment information usually available only at run-time. 
Nonetheless, these techniques are useful to the extent to which they can be applied. 
McKee and Wulf examine access-ordering in depth, developing performance bounds 
for these and other access-ordering schemes lMcK95]. The limitations inherent in 
compile-time techniques motivate us to consider an implementation that reorders 
accesses dynamically. Benitez and Davidson's algorithm can be used to detect streams 
at compile-time [Ben91], and the stream parameters can be transmitted to the reordering 
hardware at run-time. 
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Our analysis is based on the simplified architectures of Figure 1 and Figure 2. In these 
systems, memory is interfaced to the processor through a controller, or Memory 
Scheduling Unit (MSU). The MSU includes logic to issue memory requests and to 
determine the order of requests during streaming computations. For non-stream 
accesses, the MSU provides the same functionality and performance as a traditional 
memory controller. 
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Figure 1 Uniprocessor SMC Organization 

The MSU has full knowledge of all streams currently needed by the CPUs: using the 
base address, stride, and vector length, it can generate the addresses of all elements in 
a stream. The scheduling unit also knows the details of the memory architecture, such 
as interleaving and device characteristics. The access-ordering circuitry uses this 
information to issue requests for individual stream elements in an order that attempts to 
optimize memory system performance. 

A separate Stream Buffer Unit (SBU) contains high-speed buffers for stream operands 
and provides memory-mapped control registers that the processor uses to specify 
stream parameters (base address, stride, length, and data size). Together, the MSU and 
SBU comprise a Stream Memory Controller (SMC) system. 

The stream buffers are implemented logically as a set of FIFOs within the SBU, as 
illustrated in Figure 1. Each stream is assigned to one FIFO, which is asynchronously 
filled from (or drained to) memory by the accesshssue logic of the MSU. The "head" of 
the FIFO is another memory-mapped register, and load instructions from (or store 
inslluctions to) a particular stream reference the FIFO head via this register, dequeueing 
or enqueueing data as is appropriate. 

In the multiprocessor SMC system in Figure 2, all processors are interfaced to memory 
through a centralized MSU. The architecture is essentially that of the uniprocessor 
SMC, but with more than one CPU and a corresponding SBU for each. Note that since 
cache placement does not affect the SMC, the system could consist of a single cache for 
all processors or separate caches for each. Figure 2 depicts separate caches to 
emphasize the fact that the SBUs and cache reside at the same logical level of the 
memory hierarchy. 
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Figure 2 Symmetric Multiprocessor SMC Organization 

3. Task Scheduling 

The way in which a problem is partitioned for a multiprocessor system can have a 
marked effect on bandwidth. In particular, SMC performance is affected by whether the 
working sets of DRAM pages needed by different processors overlap during the course 
of the computation. If they overlap, the set of FIFOs using data from a page will be 
larger. With more buffer space devoted to operands from that page, more accesses can 
be issued to it in succession, resulting in greater bandwidth. 

Here we focus on a scheduling model that distributes loop iterations among the CPUs, 
as in a FORTRAN DOALL. This paraUelization scheme makes the effective stride at 
each of the M participating CPUs M times the original stride of the computation. If the 
number of memory banks is a multiple of the number of CPUs, this means that a 
different subset of banks will provide all the data for each CPU. Figure 3 illusWates the 
data distribution and code for this scheme. Since each of the M CPUs performs every 
Mth iteration, for stride- 1 vectors all processors use the same DRAM pages throughout 
most of the computation (obviously, if the processors proceed at different rates, some 
may cross page boundaries slightly sooner than others). 

vectorx: ] . [ ~  [ ~  [ ~  

I C P U  l I C P U  t I C P U  1 

C P U  0 CPU0  C P U  0 

CPU0'scode: for (i = O; i < L; i += 2} ( 
/* operations on x[i]*/ 

} 

CPUl'seode: for (i = i; i < L; i += 2) { 
/* operations on x[i]*/ 

) 

Figure 3 Data Distribution for a 2-CPU System 

This model of scheduling maximizes the amount of DRAM page sharing, which in turn 
maximizes the SMC's ability to exploit memory bandwidth. We calculate the attainable 
bandwidth for an optimal data distribution, thus performance bounds derived for this 
scheduling model hold for other scheduling techniques. For details of SMC 
performance under other task-scheduling strategies, see our technical reports [McK94c, 
McK94d]. 
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4. Modeling Assumptions 

We have developed a number of reordering heuristics for the SMC, and we wish to 
evaluate their effectiveness. That was (and is) the motivation for the bounds derived 
here; however, even though our discussion is couched in terms of the SMC, our bounds 
apply to any scheme that performs batched ordering. 

For the systems we consider, bandwidth is limited by how many page-misses a 
computation incurs. This means that we can derive a bound for any ordering algorithm 
by calculating the minimum number of page-misses, and we can use this bound to 
evaluate the performance of our heuristics. Similarly, we can calculate the minimum 
time for a processor to execute a loop by adding the minimum time the CPU must wait 
to receive all the operands for the first iteration to the time required to execute all 
remaining instructions. 

This analysis provides us with two bounds on performance: the first gives asymptotic 
performance for very long vectors, and the second describes startup effects. The 
asymptotic model bounds bandwidth between the SMC and memory, whereas the 
startup-delay model bounds bandwidth between the CPUs and the SMC. 

To make these bounds useful we want them to be upper bounds on what any real system 
can achieve; to that end we impose a number of constraints that real systems will not 
meet. We ignore bus turnaround delays and other external effects. We model the CPU 
as a generator of only non-cached loads and stores of vector elements; all other 
computation is assumed to be infinitely fast, putting as much stress as possible on the 
memory system. In calculating the number of  page misses incurred by a multiple- 
stream computation, we assume that DRAM pages are infinitely large. In  other words, 
we assume that misses resulting from crossing page boundaries are subsumed by the 
other misses calculated in our model. Finally, we derive our performance bounds by 
assuming that the SMC a/ways amo~zes  page miss costs over as many accesses as 
possible: read FIFOs are completely empty and write FIFOs are completely full 
whenever the SMC begins servicing them. 

As a practical consideration, we assume that the system is matched so that bandwidth 
between the CPUs and SMC equals the bandwidth between the SMC and memory; 
banks are assumed to be one word wide. The vectors we consider are of  equal length 
and share no DRAM pages in common, and we assume a model of operation in which 
each CPU accesses its FIFOs in round-robin order, consuming one data item from each 
FIFO in each iteration. Each of these constraints tends to make the bound more 
conservative (larger) and hence harder to achieve in practice, but more useful as a 
yardstick for comparing access mechanisms. 

We first look at how SMC startup costs impact overall performance, then we examine 
the limits of the SMC's ability to amortize page-miss costs as vector length increases 
asymptotically. We develop each of these models for uniprocessor SMC systems, then 
extend them to describe multiprocessor SMC performance. 
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5. Startup-Delay  Mode l s  

Unlike the traditional performance concern over processor utilization, we focus on 
memory utilization for stream computations. Nonetheless, good overall performance 
requires that the processor(s) not be left unnecessarily idle. 

Since we assume the bandwidth between the CPU and SMC equals that between the 
SMC and memory, optimal system performance allows each CPU to complete one 
memory access each bus cycle. Since the Memory Scheduling Unit attempts to issue as 
many accesses as possible to the current DRAM pages, most of our access-ordering 
heuristics tend to fill the currently selected FIFO(s) completely before moving on to 
service others. At the beginning of a computation on n streams, a CPU will stall waiting 
for the first element of the nth stream while the MSU fills the FIFOs for the first n-1 
streams. By the time the MSU has provided all the operands for the first loop iteration, 
it will also have prefetched enough data for many future iterations, thus the computation 
can proceed without stalling the CPU again soon. 

Deeper FIFOs cause the CPU to wait longer at startup, but if the vectors in the 
computation are sufficiently long, these delays are amortized over enough fast accesses 
to make them insignificant. Unfortunately, short vectors afford fewer accesses over 
which to amortize startup costs, thus the initial delays can represent a significant portion 
of the computation time. 

To illustrate the problem, consider an SMC with FIFOs of depth f. If we disregard 
DRAM page misses, the total time for a computation is the time to fetch the first 
iterafion's operands plus the time to finish processing all data. For a computation 
involving two read streams of length I =f ,  the CPU must waitfcycles (while the first 
FIFO is being filled) between reading the first operand of the first stream and the first 
operand of the second stream. According to our model (in which arithmetic and control 
are assumed to be infinitely fast), the actual processing of the data requires 2f cycles, 
one to read each element in each vector. For this particular system and computation, the 

time is at best f +  2f = 3f cycles. This is only 66% of the optimal performance of 2f 
cycles (i.e., the minimum time to process all the stream elements). Figure 4 presents a 
time line of this example: the processor and memory both require the same number of 
cycles to do their work, but the extent to which their activities overlap determines the 
time to completion. 

~ d e l a y : : _ ~ [ " ' -  processor bus}, ----41~] 

I I I I 
0 f 2f 3y 

time in cycles 

Figure 4 Startup Delay for 2 Read-Streams of Lengthf 



In our analysis, a vector that is only read (or only written) consists of a single stream, 
whereas a vector that is read, modified, and rewritten constitutes two streams: a read- 
stream and a write-stream. Let s and st,,, d represent the total number of streams in a 

computation and the number of read-streams, respectively. The bandwidth limits 
caused by startup delays can then be described by: 

s x I x 100 S x 100 
= = (1) % peak bandwidth f ( s , , ~ - l ) + ( s x t )  (_f/) (sre,,a_ 1) + s 

Figure 5 illustrates these limits as a function of the log of the ratio of FIFO depth to 
vector length for a uniprocessor SMC system reading two streams and writing one. 
When vector length equals the FIFO depth (log(ill) -- 0), this particular computation can 
exploit at most 75% of the system bandwidth. In contrast, when the vector length is at 
least 16 times the FIFO depth (log(ill) = -4), startup delays become insignificant, and 
attainable bandwidth reaches at least 98% of peak. 
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F i g u r e  5 P e r f o r m a n c e  L i m i t s  Due to Startup Delays 

In a multiprocessor environment, we can bound the performance of the entire parallel 
computation by first calculating the minimum delay for the last processor to begin its 
share of the processing, and then adding the minimum time for that CPU to execute its 
remaining iterations. In developing these formulas, we assume all CPUs are performing 
the same operation, but are acting on different data. In our multiprocessor formulas, the 
length l reflects the portion of each vector being processed by a single CPU. 

We can derive tighter bounds by tailoring our model to a particular SMC 
implementation. The way in which the MSU fills the FIFOs affects how long the CPUs 
must wait to receive the operands for their first iteration. If the MSU's ordering heuristic 
only services one FIFO at a time, then the last CPU must wait while the MSU fetches 
the read-streams for all other CPUs and all but one of its own read-streams. On the other 
hand, if the MSU can service more than one FIFO at a time, more than one CPU can 
start computing right away. 

In the former case, when the MSU only services one FIFO at a time, the minimum 
number of cycles required to fill that FIFO is I lN times the minimum for a uniprocessor 
system (because the bandwidth of the system is balanced, and there are now N CPUs 
that can each execute a memory reference per cycle). Let M represent the number of 
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CPUs participating in the computation. Then the CPUs are using M/N limes the 
potential bandwidth, and the number of streams that must be fetched before the last 
CPU can start is M x Sread - 1. The startup-delay formula under these circumstances is: 

s x 100 x M (2) 
%peak bandwidth = ( x )(  t ) ( Ms " ~ -  x ) + -I ~ 

For the latter case, let us assume that the MSU can perform accesses to M FIFOs at a 
time (one FIFO for each participating CPU). When M = N, the formula for startup 
delays is the same as for the uniprocessor SMC system (Equation 1). To see this, note 
that each CPU need only wait for all but one of its own read-streams to be fetched, and 
the average rate at which those FIFOs are filled will be one element per processor cycle. 
When M < N, the average time to fill a FIFO will be MIN times that for a uniprocessor, 
and the formula becomes: 

s x l 0 0  M 

~ ($read--1) +$ 

s x 100 x M (3) 
1 f (~)(-l)(MSread -M) +$ N 

The startup delays for the MSU servicing a single FIFO (Equation 2) and multiple 
FIFOs (Equation 3) differ only by a factor of M - 1 in the first term of the sum in the 
denominator. Thus Equation 3 also bounds bandwidth when the MSU fills one FIFO at 
a time; for simplicity, we use it as the basis for comparison with our simulation results. 

6. Asymptotic Models 

If  a computation's vectors are long enough to make startup costs negligible, then the 
limiting factor becomes the number of fast accesses the SMC can make. The following 
models calculate the minimum number of  DRAM page misses that a computation must 
incur - -  first for uniprocessors and then for multiprocessors. 

6.1 Uniprocessor Models 

The terms stream and FIFO will be used interchangeably, since each stream is assigned 
to one FIFO. For simplicity of presentation we refer to read-FIFOs unless otherwise 
stated; the analysis for write-FIFOs is analogous. We first present a model of small- 
stride, multiple-vector computations; we then extend this for single-vector or large- 
stride computations. 

Multiple-Vector Computations 

Let b be the number of interleaved memory banks, and l e t f b e  the depth of the FIFOs. 
Every time the MSU switches FIFOs, it incurs a page miss in each memory bank, thus 
the percentage of accesses that cause DRAM page misses is at least blf for a stream 
whose stride is relatively prime to the number of banks. Strides not relatively prime to 
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the number of banks prevent us from exploiting the full system bandwidth since they 
don' t  hit all banks. In calculating performance for vectors with these strides we must 
adjust our formulas to reflect the percentage of banks actually used. We calculate the 
number of banks used as the total number of  banks in the system divided by the greatest 
common denominator of  that total and the vector stride: blgcd(b, stride). The fraction of 
accesses that miss the page is thus at least b/(gcd(b, stride) x f). 

Let v be the number of  distinct vectors in the computation, and let s be the number of 
streams (s will be greater than v if some vectors are both read and written). I f  the CPU 
accesses the FIFOs (in round robin order) at the same rate as the memory system, then 
while the MSU is filling a FIFO of depth f, the CPU will consumefls more data elements 
from that stream, freeing space in the FIFO. While the MSU suppliesfls more elements, 
the CPU can removefl(s x s), and so on. Thus the equation for calculating the miss rate, 
r, for single-access vectors is: 

b 1 r =  x (4) 

ged(b, stride) f (  a + a/s + a/s2 + l/s3 +.. .)  

In the limit, the series in the denominator converges to sl(s - 1), and our formula reduces 
to: 

b ( s - 1 )  
r = 

gcd (b, stride) • fs " 

The number of page misses for each vector is the same, but a read-modify-write vector 
is accessed twice as many times as a read-vector and requires two FIFOs, one for the 
read-stream and one for the write-stream. Note that for such vectors, using a clever 
reordering scheme, the percentage of accesses that cause page misses is half that of a 
read-vector. To conservatively bound the average DRAM page-miss rate for the entire 
computation, we amortize the per-vector miss rate over all streams. If  we assume that 
none of the banks is on the correct page when the MSU changes FIFOs, then this 
average is R = r x (v / s). But if: 

1 the MSU takes turns servicing each FIFO, providing as much service as 
possible before moving on to service another FIFO; 

2) the MSU has filled all the FIFOs and must wait for the CPU to drain them 
before issuing more accesses; and 

3) the first FIFO to be serviced during the next "turn" was the last to be 
serviced during the previous one, 

then the MSU need not pay the DRAM page-miss overhead again at the beginning of 
the next turn. Thus the MSU may avoid paying the per-bank page-miss overhead for 
one vector at each turn. When we exploit this phenomenon, our average page-miss rate, 
R, becomes: 

v -  1 b (s - 1) b (s - 1) (v - 1) R = v -___.~1 x r = • = (5) 
s s gcd (b, stride) xfs  gcd(b, stride) • 2 
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Let h be the cost of servicing an access that hits the current DRAM page, and let m be 
the cost of servicing an access that misses the current page. The maximum achievable 
bandwidth for a computation is equal to the percentage of banks used, thus we must 
scale our bandwidth formula accordingly, dividing by the greatest common 
denominator of the total number of banks and the vector slride. The asymptotic bound 
on percentage of peak bandwidth for the computation is thus: 

h• I 
% peak bandwidth = (R • m) + ( ( i - R) • h) • gcd (b, stride) (6) 

Single-Vector and Large-Stride Computations 

For a computation involving a single vector, only the first access to each bank generates 
a page miss. If we maintain our assumption that pages are infinitely large, all remaining 
accesses will hit the current page. In this case, the model produces a page-miss rate of 
0, and the predicted percentage of peak bandwidth is 100. We can more accurately 
bound performance by considering the actual number of data elements in a page and 
calculating the precise number of page-misses that the computation will incur. 

Likewise, for computations involving vectors with large strides, the predominant factor 
affecting performance is no longer FIFO depth, but how many vector elements reside 
in a page. The number of elements is the page size divided by the stride of the vector 
data within the memory bank, and the distance between elements in a given bank is the 
vector stride divided by the number of banks the vector hits. We refer to this latter value 
as the effective intrabank stride, or EIS: 

EIS - stride (7) 
gcd (b, stride) 

For example, on a system with two interleaved banks, elements of a stride-two vector 
have an EIS of 1, and are contiguous within a single bank of memory. 

Decreasing DRAM page size and increasing vector stride affect SMC performance in 
similar ways. Let d be the number of data elements in a DRAM page. Then for 
computations involving either a single vector or multiple vectors with large EIS values, 
the average page-miss rate per FIFO is: 

R = H S / d  (8) 

For single-vector computations or computations in which EISId is less than the FIFO 
depth, we use Equation 7 instead of Equation 4 to calculate R. The percentage of peak 
bandwidth is then calculated from Equation 5, as before. Note that neither FIFO depth 
nor the CPU's pattern of interleaving accesses affects performance for large-stride 
computations. 

6.2 Multiproeessor Extensions 

Given the similarity of the memory subsystems for the SMC organizations described in 
Section 2, we might expect a multiprocessor SMC system to behave much like a 
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uniprocessor SMC with a large number of FIFOs. For multiprocessor systems, though, 
some of the assumptions made in the uniprocessor models no longer hold. For instance, 
we can no longer assume that each read-vector occupies only one FIFO. The 
distribution of vectors among the FIFOs depends on how the workload is paralletized, 
since this affects the CPUs' pattern of DRAM page-sharing, which in turn affects 
performance. We bound multiprocessor SMC performance for all scheduling methods 
by calculating the minimum number of page misses for the extreme case when all CPUs 
share the same DRAM pages. 

Recall that the system is balanced so that if each of N CPUs can consume a data item 
each cycle, the memory system provides enough bandwidth to perform N fast accesses 
in each processor cycle. Each CPU can only consume data from its set of FIFOs, while 
the MSU may arrange for all accesses to be for a single FIFO at a time: this means that 
the memory system can now fill a FIFO N times faster. Let M be the number of CPUs 
participating in the computation. When all CPUs use the same DRAM pages, we have 
essentially distributed each of our s streams over M FIFOs, which is analogous to using 
a single FIFO of depth F = M x f  for each stream. 

As before, we assume a model of computation in which each CPU accesses its FIFOs 
in round-robin order, consuming one data item from a FIFO at each access. It takes the 
MSU FIN cycles to supply F items for a stream. During this time, each CPU will 
consume FINs more data elements from this stream, for a total of MF/Ns freed FIFO 
positions. While the MSU is tilting those FIFO positions (in MFIN2s cycles), the CPU 

can remove M2FIN2s 2 more, and so on. Thus the page-miss rate of a vector is: 

b 1 

r=gcd(b'stride) XF(l + ~-~ + ( ~ - - ~ ) M  (M~2 + ( ) 1  ~M 3 +... (9) 

The equation for the average page-miss rate is: 

R -  r ( v - 1 )  _ v - I  x b(Ns-M) = b(Ns-M) ( v - l )  (10) 
s s gcd(b, stride) x FNs gcd(b, stride) x FNs 2 

And the percentage of peak bandwidth is computed as in Equation 5: 

h x l 0 0  1 
%peakbandwidth= ( ( R •  +-(-(I-R) • • gcd ( b, stride) ) 

7. Simulation Environment 

In order to validate the SMC concept, we have simulated a wide range of SMC 
configurations and benchmarks, varying FIFO depth; dynamic order/issue policy; 
number of CPUs; number of memory banks; DRAM speed and page size; benchmark 
kernel; and vector length, stride, and alignment with respect to memory banks. 
Complete uniprocessor results, including a detailed description of each access-ordering 
heuristic, can be found in [McK93a]; highlights of these results are presented in 
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[McK94a,McK94b]. Complete shared-memory multiprocessor results can be found in 
[McK94c]. Since our concern here is to correlate the performance bounds of our 
analytic model with our functional simulation results, we present only the maximum 
percentage of peak bandwidth attained by any order/issue policy simulated for a given 
memory system and benchmark. All simulation results here were generated using 
DRAM pages of 4K bytes. 

Recall that in order to put as much stress as possible on the memory system, we model 
the processor as a generator of non-cached loads and stores of vector elements. 
Instruction and sc_Mar data references are assumed to hit in the cache, and all stream 
references use non-caching loads and stores. 

The simulations we discuss here focus on two kernels, the results for which define the 
ends of the performance spectrum with respect to our set of benchmarks: scale, which 
involves one vector (two streams); and vaxpy, which involves three vectors (four 
streams). Vaxpy denotes a "vector axpy" operation: a vector a times a vector x plus a 
vector y. Our technical reports explore a larger space, simulating the performance of a 
suite of kernels found in real scientific codes. All our experiments indicate that the 
SMC's ability to optimize bandwidth is relatively insensitive to vector access patterns, 
hence the shape of the performance curves is similar for all benchmarks - -  asymptotic 
behavior approaches 100% of peak bandwidth [McK93a, McK94c]. Kernels are chosen, 
of course, because they are the portion of the applications that perform streamed 
accesses, which is the focus of this work; total system performance improvements 
obviously depend upon the fraction of time they spend in these kernels. 

8. Comparative Results 

All results are given as a percentage of the system's peak bandwidth, the bandwidth 
necessary to allow each processor to perform a memory operation each cycle. The 
vectors used for these experiments are 100, and 10,000 doublewords in length. Given 
the overwhelming similarity of the performance trends for most benchmarks and 
system configurations, we only discuss highlights of our results here. Although it is 
unlikely that system designers would build an SMC system with a FIFO depth less than 
the number of memory banks, we include results for such systems for completeness and 
for purposes of comparison. 

Figure 6 represents the performance of a uniprocessor SMC system with two memory 
banks, depicting bandwidth as a function of FIFO depth. The graphs on the left show 
performance for scale, and those on the right are for vaxpy. The top graphs use 100- 
element, unit-stride vectors. The bottom graphs use stride- 1 vectors of 10,000 elements. 

Short vectors hinder the SMC's ability to amortize startup and initial page-miss costs. 
Even though scale's simulation performance approaches 100% for both vector lengths, 
the percentage of peak bandwidth delivered for the vectors in Figure 6(a) is slightly 
lower than for those in Figure 6(c). Performance differences due to vector length arc 
even more pronounced for multiple-vector computations. For the 100-clement vaxpy 
computation in Figure 6(b), the startup-delay bound is the limiting performance factor. 
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Note that performance is constant for FIFO depths greater than the vector length. For 
longer vectors, as in Figure 6(d), startup-delays cease to impose significant limits to 
achievable bandwidth, and simulation performance approaches the asymptotic bound 
of over 97% of peak. 
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Figure 6 Uniprocessor SMC performance 

The hardware data points in Figure 6 were generated via gate-level simulation of our 
initial implementation. The system parameters of the prototype differ slightly from the 
systems simulated; in particular, the hardware incurs extra delays (e.g. bus-turnaround) 
that have been abstracted out of our models, thus performance is limited to about 90% 
of the system peak. Nonetheless, this data gives us some indication of how actual SMC 
behavior relates to our models. It is still too early to make definitive claims, but the 

trends suggested in Figure 6 appear to agree with our other analysis and simulations. 1 

For deep FIFOs, if we increase the number of memory banks, we decrease the number 
of vector elements in each bank: doubling the number of banks affects performance 
much like halving the vector length. Alternatively, if the FIFO depth is small relative to 
the number of banks, increasing the number of banks further behaves like reducing the 
FIFO depth further since each FIFO holds items from more banks and this reduces the 

1. These hardware simulations results arc preliminary; we expect to have more data by 
the time of publication, 
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number of items from each DRAM page. Figure 7 demonstlates this phenomenon for 
stride-one vaxpy on 10,000-element vectors on a uniprocessor systems with two and 
eight banks. Decreasing the number of elements per bank limits the SMC's ability to 
amortize overhead costs, thus performance for systems with more banks is farther from 
the asymptotic limits. Note that systems with more banks deliver a smaller portion of a 
much greater bandwidth, as shown in Figure 7(c). 
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Figure 7 Uniprocessor vaxpy Performance for Increasing Banks 

Figure 8 compares theoretical performance bounds to simulation results for our long- 
vector vaxpy computation on multiprocessor systems with two to eight CPUs. As the 
number of CPUs grows and the amount of data processed by each CPU decreases, 
performance becomes more limited by the startup-delay bound. For instance, this bound 
only begins to dominate performance at FIFO depths 128 and 256 for the 2-CPU system 
in Figure 8(a), but the crossover point between the startup-delay and the asymptotic 
bounds is between 64 and 128 for the 8-CPU system in Figure 8(c). All three systems 
deliver over 94% of peak for an appropriate choice of FIFO depth (in these cases 128). 
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The graphs in Figure 8 emphasize the importance of adjusting the FIFO depth to the 
computation. Deeper FIFOs do not always result in a higher percentage of peak 
bandwidth: for good performance, FIFO depth must be adjustable at run-time. 
Compilers can use the models presented here to calculate the optimal depth. 

All examples thus far have used unit-stride vectors, but the same performance limits 
apply for vectors of any small stride. Figure 9 illustrates simulation results and 
performance limits for increasing strides on a uniprocessor SMC system with one bank, 
a FIFO depth of 256, and DRAM pages of 4Kb. We use the large-stride model from 
Section 6 to compute the asymptotic limits, since for these system parameters and 
strides, the number of elements in a page is never larger than the FIFO depth. 
Performance is constant for strides greater than 128, for at these strides only one 
element resides in any page. 
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Figure 9 Asymptotic Limits for Increasing Strides 

Figure 10 illustrates what happens when not all CPUs participate in a computation. If 
the MSU's ordering circuitry only services a single FIFO at a time, using fewer CPUs 
may optimize performance. For instance, by using one fewer CPUs for the task- 
scheduling scheme described here (in which each of M CPUs performs every Mth loop 
iteration), the effective stride of the computation becomes relatively prime to the 
number of memory banks. In such cases, the percentage of peak system bandwidth 
delivered becomes limited by the percentage of CPUs used, which lowers the startup- 
delay bound. The graph in Figure 10 shows SMC performance when only three CPUs 
of a four-CPU system are used to compute vaxpy on 10,000 element-vectors. 
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9. C o n t u s i o n s  

As processors become faster, memory bandwidth is rapidly becoming the performance 
bottleneck in the application of high performance microprocessors to important stream- 
oriented algorithms. These computations lack the temporal locality required for caching 
alone. Dynamic access ordering, however, can optimize such accesses. Previous papers 
have shown that by combining compile-time detection of streams with execution-time 
selection of the access order, we achieve high bandwidth relatively inexpensively. 

Although our previous studies suggested good performance, we did not know how close 
our heuristic SMC algorithms were to optimal. Here we have described analytic models 
to bound the performance of both uniprocessor and symmetric multiprocessor SMC 
systems with memories comprised of multiple banks of page-mode DRAMs. Two 
different limits govern the percentage of peak bandwidth delivered: 

- startup-delay bounds, or the amount of time a processor must wait to receive 
data for the first iteration of an inner loop; and 

asymptotic bounds, or the number of fast accesses over which the SMC can 
amortize DRAM page-miss costs. 

Our analysis and simulation indicate that for sufficiently long vectors, appropriately 
deep FIFOs, and any of several selection heuristics, SMC systems can deliver nearly 
the full attainable memory system bandwidth. 

In addition, our results emphasize an important consideration in the design of an 
efficient SMC system that was initially a surprise to us - -  FIFO depth must be run-time 
selectable so that the amount of stream buffer space to use can be adapted to individual 
computations. Using the equations presented here, compilers can either compute 
optimal depth (if the vector lengths are known), or they can generate code to perform 
the calculation at run-time. 
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