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Abs t r ac t .  START-NG is a joint MIT-Motorola project to build a high- 
performance message passing machine from commercial systems. Each 
site of the machine consists of a PowerPC 620-based Motorola symmet- 
ric multiprocessor (SMP) running the AIX 4.1 operating system. Every 
processor is connected to a low-latency, high-bandwidth network that 
is directly accessible from user-level code. In addition to fast message 
passing capabilities, the machine has experimental support for cache- 
coherent shared memory across sites. When the machine requires mem- 
ory to be kept globally coherent, one processor on each site is devoted 
to supporting shared memory. When globally coherent shared memory is 
not required, that processor can be used for normal computation tasks. 
START-NG will be delivered at about the time the base SMP is introduced 
into the marketplace. The ability to be both a collection of standard SMP 
and an aggressive message passing machine with coherent shared mem- 
ory makes START-NG a good building block for incrementally expandable 
parallel machines. 

1 Introduction 

The past  few years have seen the demise of many  companies dedicated to making 
high performance parallel computers.  Some members  of the computing commu- 
nity have gone as far as saying that  parallel processing, in a classic sense, is dead. 
Although we strongly disagree with this assessment, we do agree that  parallel 
computing is still at  an adolescent stage in its development.  We believe the prob- 
lem is two-fold; it is too hard to program parallel computers,  and the hardware, 
especially for massively parallel machines, costs too much for the node perfor- 
mance they deliver and supports too little off-the-shelf software. We are trying 
to solve the first problem by using implicitly parallel functional languages like 
Id[16, 5] and pH, and mult i threaded languages such as Cid[17] and Cilk[6]. This 
paper,  however, concentrates on START-NG, our solution to the second issue. 

With  personal computers  (PC's) selling in the millions, mains t ream com- 
puters have become commodities,  resulting in lower computer  prices, sped up 
product  t ime tables, and rapid performance improvements.  Parallel computers,  
on the other hand, have tradit ionally employed a lot of custom hardware and 
software. By the t ime the machine is ready, its processing node is generally a 
generation or two out-of-date, and a factor of two or more slower than the then 
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current commercial microprocessors. The small customer bases and, therefore, 
small development teams cannot find and solve problems very quickly, making 
these custom machines and their software unreliable. 

Coupling unreliability with the high cost of custom development, the general 
lack of shrink-wrapped software and the difficulty in writing custom applica- 
tions, buying a parallel computer is difficult to justify. One would buy such 
a system only if one's application was critical enough to warrant a dedicated, 
expensive machine and the associated custom software development and mainte- 
nance cost. Massively parallel computers have fallen into the class of traditional 
supercomputers, rather than being affordable, widely-available high-performance 
computers as originally envisioned. 

START-NG 3, a joint project between MIT and Motorola, tries to address these 
problems. START-NG is based on a commercial symmetric multiprocessor (SMP) 
system that uses PowerPC 620 processors. The goal of the project is to deliver 
very aggressive parallel performance by making small, manageable changes to 
the base SMP. We have added support for low overhead, high-bandwidth, user- 
level messaging, and support for globally coherent shared memory. Starting from 
a commercial system allows us to leverage infrastructure such as the processor, 
operating system, memory subsystem, and I/O subsystem. By borrowing most 
of the system technology, we dramatically reduce development time and cost, 
allowing us to deliver START-NG at approximately the same time the base SMP 
is introduced. START-NG, though a research machine, is commercially competi- 
tive in parallel performance as a message passing machine, and also runs stock 
sequential and SMP applications efficiently. START-NG extends the sharing of 
processor, memory and I/O resources made possible on a small scale by bus 
based SMP beyond the scaling constraints of buses. 

While there are many advantages to using an entire system as the building 
block of a parallel machine, there are many technical challenges as well. Not 
only is our design constrained to using the stock PowerPC 620 microprocessor, 
which is optimized for sequential execution, but it cannot even change the system 
implementation in any significant way. Our design reuses all of the stock system 
implementation except for the boards carrying the processors. Observing these 
tight constraints while providing competitive performance is the topic of this 
paper. 

Organizat ion:  In Section 2, we present an overview of the START-N(] hard- 
ware. This is followed in Section 3 with a discussion of message passing sup- 
port on START-N(]. Section 4 discusses how shared memory is implemented on 
START-N(]. Finally, we compare START-NG with some related work in Section 5 
before concluding with the current status of the machine. 

3 START-NG is the latest incarnation of the *T or START project. For a history of the 
different versions of *T, see [4]. 
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2 O v e r v i e w  o f  S T A R T - N G  

A site in START-NG is a commercial PowerPC 620 SMP augmented with special 
hardware for message-passing and shared memory. The PowerPC 620 is a 64-bit, 
4-way superscalar processor with a dedicated 128-bit wide L2 cache interface and 
a 128-bit wide L3 path to memory. It employs some of the most sophisticated 
techniques for pipelining instructions and memory management.  It also has a 
novel feature that  allows the processor to communicate with coprocessors over 
its L2 cache interface. 

The START-NG SMP has 4 processor card slots that  are connected to the 
main memory  by a data  crossbar. The crossbar has substantially better  through- 
put  than a traditional bus. In the commercial version, each processor card con- 
tains 2 processors and their L2 caches. START-NG replaces one to four of these 
processor cards with network-endpoint-subsystem (NES) cards, each containing 
a single 620 processor, 4 MBytes of L2 cache and a network interface unit (NIU). 
The NIU allows the 620 to communicate with an MIT-developed Arctic network 
router chip[7]. The START-NG system delivered to MIT will have 4 NES boards 
per site and will have a total of 8 sites. 

MF~I Cache Coh~ent In~rconncct 

( le 
Fig. 1. A START-NG site: the white areas comprise the base SMP. The grey areas are 
our additions. 

One of the NES boards at each site has an address capture device (ACD) 
which allows a designated processor at the site to monitor and respond to bus 
transactions. When used in this role, a processor is called a service processor(sP); 
when used to run application code, it is called an application processor (AP). 
The ACD and sP,  collectively called the Shared Memory Unit (SMU), will be 
used to implement globally shared coherent memory, with coherence controlled 
at cache-line granularity. The ACD can be disabled when global shared memory 
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is not needed making it completely invisible to the system, allowing all four 
processors at a site to serve as APs. Since all NES boards will actually have 
ACD's, it may be possible (depending on motherboard specifics) to use more 
than one as an SMU, dividing up the global space between them. 

3 M e s s a g i n g  S u p p o r t  

START-NG'S user-mode message-passing capabilities are provided by a fat-tree 
network built from Arctic[7] touters, and accessed through a tightly-coupled 
hardware network interface unit (NIU) attached to each 620 processor's L2 co- 
processor interface. The NIU's packet buffers can be memory-mapped into an 
application's address space, allowing user programs to send and receive messages 
without kernel intervention by directly manipulating the buffers. Standard com- 
munication protocols, such as TCP/IP, PVM, MPI and Active Messages can be 
easily and efficiently implemented over START-NG's networking facilities. 

The Arctic routing chip designed at MIT is a 4-by-4 packet-switched router 
capable of implementing a variety of staged networks. Implemented in .6 mi- 
cron CMOS gate-array, Arctic is expected to run at 50 MHz, delivering 400 
MByte/sec/full-duplex-link at a latency of 6 Arctic cycles per hop. A full fat- 
tree with 32 end-points delivers close to 6.4 GB/s of bisection bandwidth, and 
has a maximumof 8 hops between two end-points, resulting in a network latency 
of less than 1 ps. Based on the approximate PowerPC 620 timings available to us 
at this time, each 620 processor can achieve a maximum bandwidth of 180MB/s 
for message receiving or 278 MB/s for message sending. 

Arctic supports variable-sized messages of up to 96 bytes of which 8 bytes 
are routing, control and CRC overhead. It provides two virtual prioritized net- 
works, allowing the implementation of two-priority deadlock-free protocols (often 
known as separate request-reply) on a single physical network. Arctic also en- 
forces secure space partitioning and employs sophisticated buffer management 
that allows it to sustain close to its peak bandwidth. Link-level flow control is 
implemented in hardware. Extensive error checking is designed into Arctic, in- 
cluding Manchester encoding of link-level flow control signals, and 16-bit CRC 
for every packet. Error rates are, however, low enough so that error recovery is 
unnecessary under normal operating conditions. Arctic is designed with a set of 
commercial-quality test, control and error detection and recording features. It 
was necessary to design our own router because no commercial equivalent, in 
functionality or performance, was avMlable to us. Further details about Arctic 
can be found in [7]. 

3.1 620 Coprocessor  Interface 

STAttT-NG's fast messaging capabilities are built on the L2 coprocessor inter- 
face found in the PowerPC 620 processor, which provides a low-latency, high- 
bandwidth connection to memory-mapped slave devices. Coprocessor device in- 
terfaces are required to look exactly like L2 cache sRAM, including having the 
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same read/wri te  t iming characteristics. Since the coprocessor is accessed using 
normal load/store operations, individual pages in the coprocessor region can 
be accessed either in an uncached, cached with write-through, or cached with 
write-back fashion, where caching refers to caching in L1. 

There are tradeoffs between using uncached, write-back Cached, and write- 
through cached accesses to the coprocessor interface. Accesses to the L2 interface, 
though partially pipelined, have latencies significantly longer than accesses to the 
L1 cache. Caching the coprocessor interface allows the L2 access latency to be 
amortized across an entire cache-line and allows burst transfers. But because 
the coprocessor devices are slave devices, the L2 interface is not automatically 
kept coherent. In order to read new data, the 620 must first explicitly flush the 
previously read cache-line. Write-back cached writes also require flushes to force 
data  to the coprocessor and take advantage of burst transfers to the L2 interface. 
Write-through cached writes and uncached writes do not require flushes but  may 
not use the L2 interface as efficiently. We intend to experiment with the actual 
machine to determine the most efficient approach. 

A common way to transfer a message consisting of multiple words is to first 
transfer the data, then indicate commitment  of the transaction. If commit  is 
indicated by writing to a coprocessor register, the ordering of writes, as seen by 
the coprocessor, becomes crucial. The implementation must guarantee that  the 
commit  write is not visible to the coprocessor before the data  transfer has com- 
pleted. Though simple in older microprocessors, such a guarantee is complicated 
in the 620 due to its weak memory ordering, which only ensures that  memory 
operations to the same location occur in program order. No ordering guarantee, 
however, is provided for operations to different memory locations. Modern mi- 
croprocessors provide synchronization instructions, which block the execution of 
subsequent instructions until all the prior memory operations have completed, 
to solve this problem. Such instructions, however, can be expensive. There are 
some possible 620-specific techniques which will be tried that  may allow us to 
eliminate many of the otherwise necessary synchronization. 

3.2 Network Interface Unit  (NIU)  Architecture 

The START-NG NIU interfaces to the 620 coprocessor interface through a dual- 
ported SRAM. The 620 interacts with the NIU by reading and writing to specific 
regions in the buffer. Generally, the 620 will poll the NIU by reading specific 
memory locations to see if messages have arrived. The user process, however, has 
the option of configuring the NIU to interrupt the 620 processor when certain 
conditions, such as the arrival of a certain class of message, occur. This feature 
allows the user program to avoid the overhead of polling the network if it is 
known that  messages arrive very infrequently. If the high priority network is 
devoted to the kernel, enabling the high-priority message arrival interrupt is an 
easy way to signal a kernel message arrival. 

As shown in Figure 2, the dual-ported buffer space is logically parti t ioned 
into four data  regions and one status/control  region. The status/control  region, 
located on a separate page accessible only to kernel, contains a 32-bit control 
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Fig. 2. NIU/620 Configuration, with organization of interface buffers shown in box. 

word and a 32-bit status word through which all relevant NIU internal states 
can be read and written. This is used by the kernel to initialize the N|U, and 
perform context switching. The status word also contains the ACD service re- 
quest signal. Normal user-level message sends and receives do not require access 
to this region, thus enabling ordinary page access control to protect the NIU, 
without performance penalty, from user corruption. 

The four data  regions of the NIU interface allow receiving and transmitt ing 
messages at both high and low priorities. Each data  region occupies two memory 
pages (8 KBytes), allowing independent specification of protection and caching. 
Each transmit and receive data  region, subdivided into 64 packet cells of 128 
bytes, is jointly managed by the 620 processor and the NIU as a circular queue. 
For the transmit buffers, the 620 processor acts as the producer of the queue 
while the NIU serves as the consumer. For the receive buffers, their roles are 
reversed. 

A v-bit in each packet cell indicates whether it contains a valid message. 
The consumer polls the v-bit at the head of the circular queue. When the v-bit 
is valid, the consumer can proceed to retrieve the message from the cell, after 
which it frees the cell by resetting the v-bit to invalid. Prior to storing a new 
message into the queue, the producer first checks the v-bit of the cell it wishes 
to fill to ensure that  the cell is free (v-bit invalid). After storing the message, 
the producer marks the v-bit valid to indicate to the consumer that  the cell now 
holds valid data. 
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To handle timing asynchrony due to crossing of clock domains between the 

processors and the Arctic network, the NIU must first write the entire message, 
except the v-bit, into the receive buffer. The entire message actually includes the 
quad-word containing the v-bit; however, the v-bit is written as invalid. After 
a sufficient settling time, the v-bit alone is written, to the valid state. When 
reading messages from the sRAM, the NIU must first read the v-bit and, after 
it is valid, give sufficient settling time before reading the rest of the quad-word 
containing the v-bit. 

With the use of the v-bit, there is no explicit exchange of queue indices 
between the 620 processor and the NIU to manage the circular queues. The 
dual-ported sRAM and the v-bit scheme provide a bridge across the processor 
and network clock domains, handling all the meta-stability and race concerns. 

3.3 T r a n s m i t  a n d  R e c e i v e  Cel l  F o r m a t s  

The v-bit handshake between the NIU and the 620 requires that the v-bit be 
written last by the producer, and read first by the consumer relative to the data 
that it guards. When the 620 accesses the NIU through a cached interface, data 
transfer between the 620 and the dual-ported sRAM occurs in multiple cycles 
in an order dictated by the 620. In order to make sure that the v-bit is written 
last to the sRAM, the transmit cells take on the awkward format shown on the 
left side of Figure 3, where the v-bit is in the last quad-word (128 bits) of the 
first cach~ line. 
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ox4o 

OxSO 

ox~o 

OK/0 
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Fig. 3. Transmit cell and receive cell packet formats. 

To further optimize the performance for uncached and write-through inter- 
faces, the v-bit is placed in the last double-word of the last quad-word. This takes 
advantage of 620's store-gather capability, where two 64 bits stores to contigu- 
ous, ascending memory locations that occur one after another are packed into a 
single 128 bit transfer over the L2 interface. The v-bit and header are placed into 
the first cache-line of the transmit cell since smaller messages will only use one 
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cache-line of the cell. For the receive cell, the v-bit is in the first quad-word of 
a receive packet cell (see right side of Figure 3), because the transfer of a cache 
line to the 620 starts by reading the first quad-word. 

The START-NG NIU is optimized to support short, frequent messages, com- 
mon in fine-grain parallel computation. The processor overhead of transmitting 
a 96-byte message (including an eight-byte header) by a user-level process using 
data already in its 620's registers is estimated at 42 cycles, assuming uncached 
access to the transmit buffers and buffer pointer already in register. Reading a 
96-byte message takes 65 cycles under the same assumptions. 

4 S h a r e d  M e m o r y  S u p p o r t  o n  START-NG 

In addition to being a message passing machine, START-NG includes experi- 
mental support for building cache coherent shared memory. The main goals of 
this work are to explore: (i) the OS and virtual memory management (VMM) 
issues of a cache coherent distributed shared memory (CCDSM) system, (ii) 
hardware organization necessary to prevent deadlocks, and (iii) suitable mem- 
ory models for programming. The emphasis in this research is on the necessary 
mechanisms to implement CCDSM correctly, rather than on the efficiency of 
the whole system. 

4.1 S h a r e d  M e m o r y  I m p l e m e n t a t i o n  

START-NG'S cache-line coherent shared memory is implemented completely in 
software, allowing flexibility in the choice of coherence protocols. We plan to 
start with a simple directory-based, fixed home-site approach. 

li~ilij;!::iiiiil;i;i;i;i;ii~i::i::::iiiiiiiiiiiiiii] 

::::::::::::::::::::::::::::::::: 
t~ ! iiiiiiiiiiiiiiiiiiiiii~iiiiiiii!iiiiii ii!iiii:l 

Fig. 4. Servicing a global memory cache miss, assuming a clean copy is available at 
the home site and no remote coherence action is needed. 

Figure 4 shows how a cache miss of a global location is serviced. The cache 
miss results in a bus operation that is claimed by the local SMU (step 1) acting 
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like memory. A high order bit of the physical address space is used to distin- 
guish between global and local address spaces (more on address spaces later), 
allowing the SMU to detect operations to a global location by examining the 
address. The physical address of a global location is further divided into two 
parts: a field indicating the address's home, and the remainder indicating the 
actual cache-line address. The home site field enables the SMU to forward the 
request to the home-site SMU (step 2) which maintains directory information 
and initiates the appropriate coherence actions. In our example, no further co- 
herence action is needed. Thus, after updating the directory information and 
reading the cache-line from the local dRAM (step 3), the SMU returns the re- 
quested data  (step 4) to the requesting site, where the SMU returns the data  to 
the requesting processor (step 5). This example is, of course, a specific case. In 
general, coherence action request messages may have to be sent out to invalidate 
remote caches or flush a dirty cache-line to reclaim ownership. It is important to 
note that  the details of the directory-based protocol are flexible since they are 
implemented in software/firmware by the SMU. 

In START-NG, the SMU uses a 620 at each site as a service processor (sP) 
to provide the processing power. Using a 620 provides flexible and inexpensive 
implementation, since it is fully programmable and can share system resources. 
An ACD is provided to allow the sP to observe, initiate and respond to bus 
transactions. In our current design, the sP reads and writes the ACD over the 
L3 snoopy bus itself. Faster designs, which allow the sP to communicate to the 
ACD through the coprocessor interface, were examined but not chosen for the 
initial implementation to reduce design complexity. 

Service Procc~or 
Application Proeessom 

I. t 
Local- AP Local-sP 

Local Phys/cM Memory ACD Address Space 

Fig. 5. Physical Address Space Organization 

The user applications on the AP's see two regions of virtual memory which 
translate to two distinct regions of physical memory: (i) AP local memory which 
is accessed through the local memory controller without the SMU's involvement; 
and (ii) global memory, which is mapped to the SMU. This distinction is made 
because global memory accesses that  go through the ACD are slow, while many 
objects in parallel programs, such as program text and stack frames, are local. 

The sP also sees two regions of memory: (i) sP  local memory and (ii) the 
ACD command interface. All global address space handled through the ACD is 
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eventually mapped to some sP's local address space. Although both the AP and 
sP local memory reside in dRAM accessed through the local memory controller, 
they must either be completely disjoint or shared in a non-cached fashion in 
order to avoid deadlocks. 

Deadlocks were a serious concern in the design of START-NG's shared mem- 
ory. Deadlock-free implementation requires that the ACD be able to selectively 
flow-control requests due to lack of buffers, including software-based buffers in 
the sP. In particular, new cache-line read requests must be separated from write- 
back requests to avoid the possibility of reads consuming all buffering resources 
and causing deadlocks. Coherence-initiated cache-line flushes must be issued by 
the ACD and not the sP in order to avoid deadlocks. Deadlock issues are dis- 
cussed in other papers[3, 2]. 

4.2 Access to  Loca l -Globa l  M e m o r y  

A local-global access is an access to a global location that has its home on the same 
site as the requesting processor. Our current design requires all global accesses, 
including local-global accesses, to be processed by the SMU in order to do the 
correct directory checks and maintenance. The SMU path overhead, however, 
is undesirable for local-global accesses, since the desired memory is local and 
often does not require remote coherence action. An all-software improvement, 
which we will try, would be to integrate network shared memory[15] and the 
cache-line level shared memory supported by the SMU (see Section 4.3). In the 
next paragraph, we discuss other local-global optimizations to START-NG which 
could not be implemented due to resource limitations. 

One improvement has the SMU instruct the memory controller to deliver 
the desired data directly to the requesting processor once the directory check 
passes, bypassing the SMU during the return path. Yet another optimization 
modifies the memory controller to allow it to initiate dRAM access for local- 
global access but returns the cache-line only after the SMU determines and 
signals the memory controller that it is safe to do so. When data should come 
from a remote, dirty site, the SMU squashes the data read by the memory 
controller, and takes over the responsibility for returning the data. This scheme 
can be implemented without changing the memory controller by moving the 
filtering mechanism to the NES cards. Overall, however, it is probably more 
efficient to implement the SMU in the memory controller itseff, which results in 
a FLASH-like design. 

4.3 Operating System and Virtual Memory Management on 
START-NG 

A major difference between START-NG and other CCDSM machines is in the 
OS and VMM. Some current CCDSM machines, such as Alewife, do not support 
virtual memory while others, like Dash, implement VMM with an SMP-like OS 
that has a single OS image and a single set of page tables for the entire machine. 
Each site of START-NG runs its own copy of an enhanced commercial SMP 
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OS with its own site-local page tables. A message-passing-based paging layer is 
added to achieve inter-site global virtual memory. 

The VMM implementation has two layers: local and global. The first layer 
is the standard SMP VMM, handling local memory, but is augmented to also 
cache information about global memory. Initially, all global pages are protected 
against any access. When an access to such a page is first made on a site, the 
access is trapped and processed by the second layer which can either bring the 
page into local dRAM (sP local space), or provide a physical address translation 
if the page is already in another site's memory. In either case, the translation 
has to be set correctly so that the generated address falls into the AP global 
address space, and the home-site ID is in the appropriate field. The first layer 
VMM caches this until it is changed by the second layer. 

This VMM approach will enable techniques similar to NVM[15, 9] that sup- 
port coarse grain sharing and replication of pages by mapping global virtual 
pages into the AP's local physical memory, allowing accesses to those pages to 
bypass the SMU. START-N(] therefore offers the flexibility of keeping coherence 
for global data at either page, or cache-line levels. At any time, each page has 
to be using only one scheme, but the selection can be changed dynamically, and 
independently for each page. 

From the OS perspective START-NG looks like a high-speed network intercon- 
nection of multiple autonomous systems. This multiple OS image approach has 
significant advantages in fault tolerance; an OS crash at one site will not neces- 
sarily crash the other sites, killing only applications which depend on the crashed 
site. Another advantage is the fact that the SMP OS requires very minimal, if 
any, modifications. A third advantage is that TLB and other VMM-specific bus 
operations do not need to be broadcast across the entire machine whenever they 
occur. Finally, the use of site-local page tables offers software a choice of the 
granularity at which coherence is maintained. If desirable, it is easy to main- 
tain page-level coherence, rather than the usual cache-line-level coherence, for 
selected pages. 

4.4 Expec t ed  Pe r fo rmance  of  START-NG's Shared  M e m o r y  Sys tem 

This section presents estimated service times for global cache misses in START- 
Nr As noted earlier, the primary goal of shared memory support is not per- 
formance. The previous sections noted areas which could be improved but were 
not done for the START-NG implementation because of resource limitations. 
Not surprisingly, START-NG's shared memory performance is not particularly 
strong. Due to START-NG's very large caches (4 MB) and the improved locality 
due to its SMP nature, we hope cache miss rates will be low enough to make the 
coherent shared memory performance acceptable. 

The penalties of cache-misses are shown in Figure 6. The times are given 
in processor cycles, and are approximate and conservative for START-NG. The 
penalties do not include network latencies, which is an orthogonal implemen- 
tation issue. The corresponding penalties for the Stanford FLASH, as reported 
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Type of Miss 

L3 Hit 
Local Clean 
Local Dirty Remote 
Remote Clean 
Remote Dirty at Home 
Remote Dirty Remote 

START-NG 
(proe cycles) 

FLASH 
(proc cycles) 

157 54 
199 54 
575 198 
520 202 
575 202 
955 250 

Fig. 6. Expected miss penalties excluding network latency in processor cycles. 
START-NG has a 133 MHz clock cycle while FLASH has a 200 MHz clock. The numbers 
for FLASH are taken from [10]. 

in [10] are given for comparison. To the first order, the miss penalties for START- 
NG are between 3 and 4 times longer than FLASH. 

The actual impact of these numbers on performance depends on the miss 
rates and the percentage of memory operations in a program. When all other 
parameters are the same, a factor x increase in miss penalty requires a factor x 
decrease in miss rate to maintain the same overall run-time. Thus, if all param- 
eters are the same, we would require a miss rate of between 3 and 4 lower than 
FLASH's to get to the same level of performance. The parameters are, however, 
not all the same. START-NG is based on SMP's which reduces the number of 
sites so that a larger fraction of references should be local-globM. We also plan to 
make aggressive use of network virtual memory (mapping global pages to local 
pages) to further increase locality and reduce SMU utilization. 

Large objects can be prefetched or steamed into a large software cache (L3 
cache) maintained by the sP,  further improving locality. Because the system 
continues to provide coherence maintenance, the user code can safely provide 
hints for prefetching based only on approximate information. 

Another way to circumvent miss penalties is to switch threads when a cache- 
miss occurs. When the cache-line is returned, the thread is restarted where it 
left off. T h e  penalty of a cache-miss is simply the time to swap out the thread 
and swap it in later, plus the cost of checking for cache-misses. Such a scheme 
is required to cache memory locations with synchronizing semantics such as I- 
structures[5]. 

Without  special hardware support to detect and handle cache-misses, START- 
NG must implement this scheme in software. We plan to use a miss  pat tern  as the 
returned data  to indicate a cache miss. The application code tests all global loads 
to determine if a cache miss has occurred. The SMU returns the miss pattern 
after an access fails to hit in the L3 cache. If the miss pat tern is encountered, the 
application thread sends a message to obtain the cache-line, then swaps itself 
out and schedules the next thread. The cache-line request includes information 
on how to restart the thread. The requested data  is returned directly to the 
suspended thread and the cache-line to the sP  for insertion into the L3 cache, 
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ensuring that the scheme will work even if real data is equivalent to the miss 
pattern. An upper bound on the overhead of access to global memory would be 
around 300 cycles. Speculation and superscalar execution should remove most, 
if not all of the miss-checking overhead. 

5 R e l a t e d  W o r k  

START-NG is heavily influenced by dataflow architectures. Its message passing 
architecture emphasizes low-latency delivery of small messages rather than high- 
bandwidth transfer of large messages, although its bandwidth is very competi- 
tive. Achieving low overhead sending of small messages is a more difficult objec- 
tive to achieve but allows finer granularity parallel execution. Machines that have 
influenced us in this area are the original *T project[19], MIT's Monsoon[18], 
ETL's EM-4122], the J-Machine[8] and the M-Machine[ll]. 

START-NG's software approach to cache-coherency is shared by other projects 
as well. The Wisconsin Wind Tunnel[20] (WWT) uses minimalhardware support 4 
to implement shared memory. Network Virtual Memory[15, 14] (NVM) takes 
advantage of virtual-memory management hardware to maintain coherency at 
page-granularity. 

START-NG is remarkably similar in some ways to Typhoon[21], an architec- 
ture developed at the University of Wisconsin. Typhoon, however, is not SMP 
based and proposes a much larger degree of custom hardware for its message 
passing and shared memory support than START-NG. 

Alewife[l] and FLASH[10] use varying degrees of software in their coherency 
processing. Alewife has hardware support for maintaining coherence, but traps 
to software for exceptional cases not supported in hardware. Each Alewife site 
consists of a modified SPARC 2 processor and a fully custom memory controller, 
the CMMU. Unlike STAaT-NG, Alewife cannot use standard commercial soft- 
ware such as operating systems. 

Cache-coherency on FLASH, like on START-NG, is maintained completely in 
software. That software, however, runs on a special piece of hardware, the Magic 
chip, which replaces the standard memory controller. The Magic chip is much 
more aggressive than the SMU, and achieves better global cache-miss perfor- 
mance, but requires much more design effort both in the special hardware and 
in the system software to use it. FLASH's shared memory design is conceptually 
cleaner since it avoids unnecessarily recrossing the L3 and thus eliminates some 
potential deadlock situations. 

The Stanford DASH[13, 12] is similar to START-NG in that it uses SMPs 
as building blocks for parallel machines. It adds custom shared memory boards 
to provide cache-coherent shared memory across multiple SMP sites. Unlike 
START-NG, all the protocol processing is performed by hardware on the shared 
memory board. All the directory memory also resides on this board. DASH's 

4 They hijack the ECC bits and handlers rather than adding any additional hardware. 
Unfortunately, this strategy cannot be supported on more aggressive processor ar- 
chitectures which do not provide precise ECC exceptions. 
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shared memory implementation, unlike START-NG'S, allows access to local-global 
memory to proceed like a purely local access, unless coherency action has to be 
carried out on remote sites. However, the protocol is fixed in hardware. 

START-NG's approach to shared memory uses much simpler hardware than 
any of the hardware supported shared memory schemes that we have encoun- 
tered, allows finer-grained coherency control than NVM, and works with much 
more aggressive processors than the Wisconsin Wind Tunnel. We believe that 
this system will be an extremely competitive message passing machine which 
will also enable research into global shared memory issues. 

6 C u r r e n t  S t a t u s  a n d  C o n c l u s i o n s  

START-NG'S delivery schedule is partitioned into 3 phases. Phase 1, to be deliv- 
ered to MIT at the beginning of 1996, will consist of a machine with 8 sites, each 
containing 4 NES boards. The Phase 1 NES boards will communicate with their 
NIU's at either a third or a half of the processor clock rate. The ACD will run 
at a fourth of the processor clock rate, forcing the memory bus to run at that 
speed when the ACD is enabled and at L2 speeds otherwise. The ACD and NIU 
will be built from off-the-shelf parts, such as FPGA's and dual-ported sRAM's. 
The 620 clock rate may have to be reduced slightly to accommodate the ACD 
and NIU. 

Phase 2 will raise the 620 processor to its maximum rated speed and the NIU 
clock to one half of the 620 clock. The ACD clock-speed remain a factor of 4 
slower than the 620 necessitating the 620 L3 bus to run at that speed when the 
ACD is turned on. Phase 2 is due in the middle of 1996. 

Phase 3 will boost ACD clock rate to one half of the 620 clock rate, making 
the SMP sites of the machine run at full commercial speeds even when the ACD 
is turned on. Phase 3 is currently planned for delivery perhaps in September of 
1996, but will be influenced by results from experiments conducted on the phase 
1 machine. 

START-NG is an improvement over networks of workstations, capturing most 
of their advantages while significantly out-performing them. START-NG will de- 
liver very aggressive message passing performance and will provide mechanisms 
to experiment with cache-coherent shared memory. Intensive effort to develop 
simulators, compilers, operating system support and coherency protocols are un- 
derway. START-NG should be a cost-effective, realistic platform for research as 
well as commercial parallel computing. 
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