
Costs  and Benef i t s  of  Mul t i thread ing  w i t h  
Off - the-Shel f  RISC Processors  

Olivier C. Maquelin 1, Herbert  H.J. Hum 2, Guang R. Gao 1 

1 McGill University, School of Computer Science 
3480 University St., Montr6al, Canada, H3A 2A7 

2 Concordia University, Dept. of Electrical and Computer Engineering 
1455 de Maisonneuve W., Montr6al, Canada, H3G 1M8 

Abs t r ac t .  Multithreaded architectures have been proposed for future 
multiprocessor systems due to their ability to cope with network and syn- 
chronization latencies. Some of these architectures depart significantly 
from current RISC processor designs, while others retain most of the 
RISC core unchanged. However, in light of the very low cost and ex- 
cellent performance of off-the-shelf microprocessors it seems important 
to determine whether it is possible to build efficient multithreaded ma- 
chines based on unmodified RISC processors, or if such an approach faces 
inherent limitations. This paper describes the costs and benefits of run- 
ning multithreaded programs on the EARTH-MANNA system, which 
uses two Intel i860 XP microprocessors per node. 

1 I n t r o d u c t i o n  

Multi threaded architectures [1, 2, 12] have been promoted as potential  process- 
ing nodes for future parallel systems due to their inherent abihty to tolerate 
network and synchronization latencies. These delays are hidden by letting the 
processing unit switch to a different thread of execution instead of idling until 
the operation has completed. Due to the additional synchronization overhead 
when taking advantage of parallelism at a finer level, m a n y  architects question 
whether mult i threading support  can be made  transparent  to sequentially ex- 
ecuting code and still be useful. However, prel iminary results gained with the 
EARTH-MANNA system show tha t  mult i threading can indeed be useful, even on 
machines built with conventional RISC microprocessors. Even though the Intel 
i860 XP processor used in EARTH-MANNA was not designed for mult i thread-  
ing, benchmark  results show that  good speedups can be achieved, even compared 
with an efficient sequential implementat ion.  Moreover, a detailed analysis of the 
mult i threading overheads shows that  they could be reduced significantly without 
having to switch to a custom processor design. 

1.1 T h e  E A R T H - M A N N A  s y s t e m  

The results discussed in this paper  were gained with our implementat ion of the 
EARTH (Efficient Architecture for Running THreads) model [4, 6, 5] on top of 



118 

the MANNA (Massively parallel Architecture for Non-numerical and Numerical 
Applications) multiprocessor [3] developed at GMD-FIRST in Berlin, Germany. 
Each node of a MANNA machine consists of two Intel i860XP RISC CPUs, 
clocked at 50 MHz, 32 MB of dynamic RAM and a bidirectional network interface 
capable of transferring 50 MB/s in each direction. This dual-processor design is 
similar to the EARTH model (see Fig. 1), which separates the processing node 
into an Execution Unit (EU) and a Synchronization Unit (SU). 

I . . . . . . . . . . . . . . . . . . . . .  0 

Network 

I . . . . . . . . . . . . . . . . . . . . .  I 

t 

Fig. 1. The EARTH architecture 

As demonstrated in [5], it is possible to implement multithreading support 
for such a machine without a major impact on performance. Performance of the 
parallelized code on a single node can be close to that of the sequential code 
because substantial portions of the code can often be executed in the normal 
sequential way. As shown in Sect. 3.3, performance gains can also be achieved 
by taking advantage of the SU to off-load data transfers from the main CPU. 
It is Mso interesting to note that for the EARTH-MANNA system the cost 
of saving and restoring registers is only a relatively small fraction of the total 
context switch costs (see Sect. 2.4). This means that better hardware support for 
multithreading should focus primarily on reducing the remaining costs, which 
are mostly due to communication between the EU and SU. 

1.2 Synopsis  

The next section discusses the overall performance of the EARTH-MANNA sys- 
tem and the costs associated with the multithreading support, such as the over- 
head to issue a split-phase transaction and the context switching costs. Then, 
Sect. 3 gives some insights into the relative performance of single-processor vs. 
dual-processor node designs. The costs for all internal operations involved in a 
remote memory access are shown for both cases, and finally some experimental 
results showing the benefit of a second processor are discussed. 



119 

2 Performance of the Multithreading Support 

This section discusses the performance of the EARTH-MANNA mult i threading 
support .  It first shows the performance of some typical operations, then goes into 
more details to describe the EU overhead. The cost of communicat ion between 
EU and SU is shown to be significant, mainly  due to the necessary DRAM ac- 
cesses. In contrast,  the costs due to function invocation and to saving or restoring 
registers are shown to be relatively modest .  

2.1 Performance  o f  Typical  E A R T H  O p e r a t i o n s  

In order to exploit parallelism at a finer level of granularity, it is impor tan t  to 
reduce the costs of small messages, such as remote function calls or single-word 
remote memory  accesses. While more conventional architectures focus primari ly 
on high network bandwidth,  the EARTH-MANNA system also tries to achieve 
very low latencies for the most  impor tan t  operations (see Table 1). 

'EARTH Sequential 
Operation Local 
Spawn thread 
Load word 
Store word 
Function call 

2354ns 
2648 ns 
2560 ns 
5296 ns 

Sequential Pipelined Pipelined 
Remote Local  Remote 
4286 ns 2003 ns 1570 ns 
7109 ns 1137 ns 1908 ns 
6458 ns 1060 ns 1749 ns 
9216 ns 3188 ns 2792 ns 

Table 1. Execution time of some EARTH operations 

These are overall costs, which include the network delays and the synchro- 
nization overhead. A substantial  par t  of these costs can be hidden through mul- 
t i threading. The actual  costs to the EU will be described in more detail in 
Sect. 2.2. Because the EARTH model implements  split-phase transactions, two 
or more EARTH operations are necessary to implement  the operations in Ta- 
ble 1. See Sect. 3.1 for an example showing the detailed costs for a remote load. 

Four numbers are shown in Table 1, each corresponding to a different usage 
of the operation. The typical latency depends on the location of the data  that  is 
referenced or the thread that  is started. Remote  references necessitate network 
accesses, which slows down execution. Sequential and Pipelined are two extremes 
of the typical usage. The sequential value indicates how long it takes to perform 
the complete operation, including context switching. In the pipelined case, on 
the other hand, operations are issued as fast as possible, without the need to 
synchronize before issuing the next operation. Obviously, the pipelined numbers  
are lower, as the EU, SU and network can all work in parallel. 

These numbers compare well with other architectures, even those with hard- 
ware support  for remote  memory  accesses. For example, in the Stanford DASH 



120 

multiprocessor [8] a remote load takes 3 #s. In the Stanford FLASH architecture 
[7], a remote load will be performed in about  1 #s. However, the processor and 
network speed of the FLASH architecture are about  4 - 6 times faster than  
the corresponding numbers in the MANNA architecture. The relative speed of 
communication vs. computat ion will therefore not be very different. 

Performance of bulk data  transfers is also excellent, with a m a x i m u m  band- 
width of 41 MB/s  in one direction and 61 MB/s  when da ta  is transferred in bo th  
directions simultaneously. The limiting factor in the first case is the packetization 
overhead, which reduces the usable link bandwidth by nearly 20%. In the second 
case the i860XP's  memory  interface becomes the bottleneck. These values are 
especially good considering that  our fastest local memory  to local memory  copy 
routine achieves 77 MB/s.  

2.2 E U  O v e r h e a d  for  t h e  E A R T H  O p e r a t i o n s  

The execution t imes shown in Table 1 consider the total  execution time. How- 
ever, because the EU and SU can work in parallel, the EU can switch to a differ- 
ent thread while the SU performs the actual work. Table 2 shows the remaining 
EU overhead for some typical EARTH operation, as well as the t ime needed by 
the local SU and the remote SU to do the actual work. The EU overhead is the 
only part  of the execution costs that  can not be masked by multi threading. A 
more complete table can be found in [5]. 

EARTH Local EU Local SU Remote SU! 
Operation Overhead (ns)! Costs (ns) Costs (ns) 
SYNC (local) 
SYNC (remote) 
GET_SYNC (local) 
GET_SYNC (remote) 
DATA_SYNC (local) 
DATA_SYNC (remote) 
INVOKE (local) 
INVOKE (remote) 
END_FUNCTION 
END_THREAD 

700 
700 
780 
780 
780 
780 

800-1500 
800-1500 

750 
720 ! 

200 
500 
300 
500 
300 
500 

300-1000 
500-2000 

0 
0 

0 ~ 

700 ! 
O' 

800 
0 

800 
0 

500-2000 I 
0 
0 

Table 2. Costs of some EARTH operations 

As an example,  a GET.SYNC (read word) operat ion where the data  happens 
to be local costs the EU 780 ns on the average, while it takes the local SU only 
about  300ns to perform the actual operation. These numbers are only averages, 
as the actual cost depends on many  factors, such as cache hit rate  and bus 
contention. Also, the EU overhead includes the EU +-+ SU communicat ion costs, 
but  these costs are not included in the SU numbers.  



121 

Again, these numbers compare well with similar architectures. For example, 
with Active Messages on the CM-5 [13] tl~e overhead to send a message is 1.6#s. 
However, because communication is not off-loaded to a second processor, the 
overhead of receiving that  message (1.7ps) and executing the corresponding 
handler also has to be taken into account. The costs for the complete operation 
are therefore significantly larger than the typical 700 - 800 ns EU overhead of 
the EARTH-MANNA system. The J-Machine [10] achieves better  performance, 
due to its hardware support  for communication and synchronization. However, it 
still takes 0.9 ps to send and receive an Active Message handler on that  machine. 
Moreovel;, handlers are executed on the same processor, thus further slowing 
down the computation. 

Considering that  on MANNA each off-chip access takes about 200 - 300 ns, 
the run-time system is quite efficient. For such low-level code the number of 
instructions alone is not sufficient to get a good approximation of the execution 
time. Because communication between the EU and SU goes through software 
queues in the local memory ,  and because this information is shared between 
both processors, a certain number of cache misses and invalidations can not be 
avoided. For example, Fig. 2 shows the code for an END_THREAD operation 
(which switches to the next ready thread).  

1: l d . 1  16( r14) ,  r l  
l d . 1  20 ( r14 ) ,  fp  
b t e  0, r l ,  lb  
s t . 1  r0 ,  16(r14) 
b r i  r l .  
ld .1  0( r14) ,  r14 

/ /  load  i n s t r u c t i o n  p o i n t e r  
/ /  load  frame p o i n t e r  
/ /  branch back i f  queue empty 
// mark element empty 
// branch to specified address 
// fetch address of next element 

Fig. 2. Implementation of END_THREAD 

The processor first loads the new instruction and frame pointers, branching 
back i f  the queue element turned out to be empty. After successfully loading 
the new pointers it marks the element empty, branches to the thread address 
and moves the queue pointer to the next element. This instruction sequence is 
quite short and little can be done to make it more efficient without additional 
hardware support. However, it takes on the average 720ns to execute, which 
is significantly more than the 140 ns it would ideally take to execute these 6 
instructions (bri needs two cycles to execute, for a total  of 7 cycles). 

The reason for the difference is that  this code always involves at least one 
cache miss and one off-chip write, as shared data has to be transferred from the 
cache of the first processor to the cache of the second processor and consumed 
elements have to be freed. Bus conflicts also slow down communication, as the 
EU has to wait for the SU to release the bus. With today's RISC processors, 
maximum performance can only be achieved with good cache hit rates, or in 



122 

other words when no off-chip accesses are performed. However, communication 
with another processor necessarily causes off-chip accesses. This turns out to be 
a crucial factor when using two CPUs per node. 

With only the conventional, bus-based communication mechanisms, little can 
be done to improve performance. However, it is quite possible to improve hard- 
ware support for EU ~-~ SU communication while still using an off-the-shelf pro- 
cessor as execution unit. This could be done e.g. with hardware queues that  
bypass the memory hierarchy (see Sect. 3.2). With adequate support it should 
be possible to lower the EU overhead for sending a request to around 100 - 
200 ns, which would be less than the typical cost of a cache miss. 

2.3 Function Invocation 

The EARTH-MANNA system distinguishes between 4 different types of function 
invocations: normal sequential call, sequential call of a threaded function, invo- 
cation on a specific remote node, and invocation on an arbitrary node through 
dynamic load balancing. The frame of a threaded function, i.e. a function that  
contains threads or that calls other threaded functions, is allocated dynamically 
from the heap. Such functions can then invoke other threaded functions, or they 
can call sequential functions with the normal stack-based mechanism. 

Frame allocation from the heap is necessary for threaded functions, as they 
can run in parMlel with each other and therefore terminate in an arbitrary order. 
By keeping free lists for the most common frame sizes (i.e. the smallest frame 
sizes), the typical overhead for dynamic frame allocation can be kept down to 
around 200ns. Because normal function calls use the sequential, stack-based 
calling mechanism, such functions run at the same speed as in a sequential 
implementation, which is crucial for good overall performance. This also allows 
the standard system libraries to be used unchanged. 

2.4 C o n t e x t  S w i t c h i n g  

Typical context switching implementations on conventional machines have to 
save and restore a large number of processor registers. However, the set of reg- 
isters that are really active at context switch points, i.e. that  really must be 
saved or restored, is often much smaller. This fact also motivated other archi- 
tects to develop new mechanisms to speed up context switches, such as e.g. the 
Named-State Register File [11]. 

In the EARTH-MANNA system, context switches among threads are explicit 
and known to the compiler. The EARTH Threaded-C compiler can therefore 
analyze register usage at thread boundaries and minimize the number of registers 
saved and restored. The resulting save set is in general a conservative estimate 
of the registers that  are really active, due to the presence of conditional branches 
and due to other simplifying assumptions made by the compiler. However, even 
with these limitations it turns out that  on the average only a few registers need 
to be saved or restored. Table 3 shows context switching information that  was 



123 

gathered from five widely different benchmarks. See [5] for a detailed performance 
evaluation of these benchmarks. 

Benchmarks Context Total Total Average Average 
Switches Saved Restored Saved Restored 

Ray Tracing 258 518 516 2.01 2.00 
Protein Folding 65493 150327 177128 2.30 2.70 
Paraffins 294 287 2 0.98 0.01 
Tomcatv 77776 27131 154123 0.35 1.98 
N-Queens 3780338 9868155 9868155 2.61 2.61 

Table 3. Registers saved and restored 

The average number of registers saved and restored is quite low for all five 
programs. This seems to be more or less independent of the average thread run- 
length, which ranges from 14/~s for N-Queens to about 1 s for Ray Tracing. These 
numbers are specific to the code generator we are using (the EARTH Threaded- 
C compiler is based on a commercial C compiler from The Port land Group Inc.), 
as different compilers will keep different variables in registers. However, a closer 
look at the generated object code did not reveal any serious shortcomings in 
register usage, but  rather reinforced our conviction that  the number of active 
registers at context switch points is often quite low. 

Moreover, our experiences showed that  in most cases good cache hit rates 
can be achieved for the loading and saving of registers. This means that  the 
cost per load or store is only about 20 ns. On EARTH-MANNA the save/restore 
overhead is therefore only a small fraction of the total thread switching costs. It 
seems therefore much more important  to support the EU ~-~ SU communication 
in hardware than to add support  for multiple register sets. 

3 S i n g l e  P r o c e s s o r  v s .  D u a l  P r o c e s s o r s :  a C a s e  S t u d y  

This section discusses the benefits of using a duM-processor node design in more 
detail. A detailed breakdown of costs for the remote load operation gives some 
insights into what could be expected from a single-processor implementation and 
what could be gained from better  hardware support. Nevertheless, we then show 
that  even without such hardware support some remote memory accesses can be 
masked by taking advantage of multi threading and a second processor. 

3.1 D e t a i l e d  E x e c u t i o n  Cos t s  

To better understand the advantage of having a second processing unit, it is 
first necessary to understand how much time is spent in each part of a typical 
operation. Table 4 shows a detailed breakdown of costs for a remote load. 



124 

Operation Delay 
EU send request to SU 780 ns 
SU fetch request from EU 500 ns 
SU generate and send message 500 ns 
Transmission and polling delay 1000 ns 
Remote SU read message from link 500 ns 
Remote SU perform GET operation 300 ns 
Remote SU generate and send response 500ns 
Transmission and polling delay [1000 ns 
SU read response from link 500 ns 
SU store result and sync 300 ns 
SU insert into ready queue 500 ns 
EU fetch next thread information 720 ns 

7100 ns Total  

Table 4. Breakdown of costs for the remote load operation 

In order  to  offer the  s ame  func t iona l i t y  in a s ingle-processor  node,  some sort  of  
i n t e r rup t  (or o ther  pe r iod ic  pol l ing)  m e c h a n i s m  has  to  be  imp le me n te d .  Table  5 
shows the  e s t i m a t e d  b reakdown  of  costs  for an i n t e r rup t -d r iven  i m p l e m e n t a t i o n .  

Operation Delay 
EU generate and send message 800 ns 
Transmission delay 500 ns 
Remote EU interrupt latency 1000 ns 
Remote EU read message from link 500 ns 
Remote EU perform G E T  operation 300 ns 
Remote EU generate and send response, 800 ns 
Transmission delay 500 ns 
EU interrupt latency 1000 ns 
EU read response from link 500 ns 
EU store result and sync 200 ns 
EU fetch next thread information 200 ns 
Total  6300 ns 

T a b l e  5. Costs for an interrupt-driven implementation of remote loads 

These  number s  are es t ima tes ,  as no i n t e r rup t -d r iven  version of  the  r u n - t i m e  
sys t em has  been  i m p l e m e n t e d  yet .  For  example ,  i t  is difficult to  exac t ly  pred ic t  
the  costs of  i n t e r rup t  la tencies .  A r a the r  op t imi s t i c  value  was chosen for t h a t  
delay to  make  sure t h a t  our  compar i son  is not  unfa i r  to  the  i n t e r rup t -d r iven  
version. 



125 

In the single-processor, i.e. the interrupt-driven implementation, it is not 
necessary to send messages through the second processor; thus the total elapsed 
t ime for a remote load operation is smaller (6300 ns instead of 7100 ns). However, 
with a dual-processor node the amount  of work done by the EU is much smaller, 
as most of the work can be off-loaded to the SU. Therefore the total  EU overhead 
adds up to only 1500ns, while in the single-processor case it is 5300ns. This 
means that  the dual-processor version can achieve a higher throughput.  

A dual-processor node design is therefore expected to achieve better overall 
execution t ime if the remote access latencies can be masked by multithreading, 
but  could perform worse if this is not the case. In any case, however, the EU 
costs for a single operation are still quite high compared with the typical costs 
for loads and stores to the local memory. It is therefore necessary to further 
reduce this overhead if parallelism is to be exploited efficiently at the level of 
individual reads and writes. 

3.2 Gains  t h r o u g h  be t ter  Hardware  Support  

On MANNA it turns out that  the EU ~-* SU communication costs dominate 
the EU overhead. This is in part  due to the lack of support for direct cache-to- 
cache updates, which forces all such communication to go through DRAM. More 
efficient cache strategies would help, but  without additional hardware support  
it will not be possible to drastically lower the EU overhead. 

In order to achieve significant improvements it would be necessary to signifi- 
cantly simplify the communication protocol, e.g. by supporting EU ~-~ SU queues 
in hardware. Hardware flow control would eliminate the need for test and branch 
instructions and eliminate some off-chip accesses. Also, bypassing the system bus 
would reduce the amount  of bus collisions. With such hardware support it should 
be possible to reduce the cost for issuing a request or switching to the next thread 
to around 100 - 200 ns, less than the typical cost of a cache miss. This is only 
an estimate, as the exact numbers depends on the amount of hardware spent for 
supporting communication. 

However, some costs are still likely to remMn in a dual-processor node con- 
figuration. For example, the value returned by a remote load would still have 
to go through the system bus, as the EU expects the SU to store it in the lo- 
cal memory. Single-processor node designs will not suffer in the same way from 
inefficiencies due to the memory hierarchy, as no data  needs to be transferred 
from one processor to the other. However, there are also efficiency limits due 
to the interrupt latency and to the fact that  in a single-processor design all the 
work has to be performed by the main processor. Therefore, the dual-processor 
approach still seems the most promising for high-performance multiprocessors. 

3.3 Benef i ts  o f  Dua l  Processors  

Even without extensive hardware support,  significant gains can sometimes be 
achieved with a second processor. As an example, we discuss the multi threaded 
execution of Livermore Loop 7 [9]. The body of this parallel loop is a moderately 



126 

complex expression, which reads from several arrays and writes to a different 
one. For the purposes of our experiment we forced one array to be remote and 
the others to be local. We also forced the whole loop to execute on a single 
node, even though it could run in parallel. The only use of paralleIism in this 
case is to mask latencies. In order to experiment with other communicat ion to 
computat ion ratios we also artificially increased the amount  of communicat ion 
by fetching the data  two, four or more times. 

The purpose of this experiment was to measure how well the system is able to 
hide the communicat ion latencies. In order to compare with the mult i threaded 
code, a version was developed where all the communicat ion is performed at the 
beginning, before the loop starts.  The execution t ime of that  version therefore 
corresponds to no overlap between communicat ion and computat ion and no mul- 
t i threading overhead (because the normal  sequential code can be executed after 
the data  has been fetched). In order to get meaningful results we also increased 
the loop count from 990 to 9900, as with 990 iterations it takes only 190/~s to 
perform all communication.  

120 
t~ .o 

~oo 
E 
O 

o 80 

e -  

= 60 

�9 40 

ID  

~ 20 

O 

~ 0 

",.i ~ i i i l  i i i i i i i l  i i 
~" ",i i ~ i il i No~rrrial r ~z 
_,_~\ !., i i i i i  i i i Cdrf i r~t~nicat ionlx2 4 §  
- ' i \  ...... ~ : , - r i r i  . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . .  i . . . . . . . .  i i r  

\ , i \ i  i i l i  i i i i Gdmnh6nicat ionix8 +x ..... 
~.'~ i ~. i i i! i i i iCOrO'.*OO~cat, on~ 16 ~-- 

- ' - ' ;  ~ ' " ' " i u  . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . .  ~ . . . . . . . .  ; - ' " : . ' - . . ' " - ' . . - - : . " ~ - - ;  . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . .  ~ . . . . . .  

i-~ i ~--.:'.~.i [ i ! i ! i i i i  1 i,, 

...... i i - i i  .......... ::::--i ...... 4 i : : - k - : : L : } ~ : 2 : i : i - ~ -  . . . . . . .  -'-:-ri ........... ! ....... 

! , i ~ !i " " ~ .... T" ' i ' I"T'TT'i  ................... .T .......... ~ ..... 

. . . .  . . . . . . . . . . .  . . . . . . .  

: '., :. ! " r { ~ ~ ~ : r  ! " " ~  

i : i i i i t  i i i i i i i i  

1 O0 1000 
Thread Size (number of iterations) 

Fig. 3. Percent of communication time masked 

Figure 3 compares the total  communicat ion overhead for both  implementa-  
tions. A value of 100% means tha t  the total  overhead for the mult i threaded code 
was the same as if the da ta  had been fetched all at once at the beginning. A 
value of 0% would mean tha t  the execution t ime for the mult i threaded code 



127 

was the same as for the sequential code (i.e. communication perfectly hidden). 
This comparison was made for different thread sizes and for different amounts 
of communication. 

With small thread sizes the costs are high, as the communication and multi- 
threading overheads increase. At the other hand of the spectrum, the amount of 
parallelism becomes too small to efficiently hide the communication. In between, 
there is a wide range of thread sizes for which a substantial percentage of the 
communication time could be hidden. The optimum size in this example is 330 
iterations, in which case the total communication and multithreading overhead 
was just 5.8% of the sequential data transfer time. With increased communi- 
cation the machine behavior remains roughly unchanged until the communica- 
tion time becomes larger than the computation time (with 16 times the normal 
amount of data transferred). At that point, of course, it becomes impossible to 
hide all the communication. 

4 Conclus ion  

We have implemented a multithreading layer on top of the MANNA architec- 
ture, a machine based on off-the-shelf RISC processors. Our experiences with the 
EARTH-MANNA system indicate that it does not introduce substantial over- 
heads. Moreover, the possibility to overlap computation with communication can 
provide additional performance improvements, significantly reducing the overall 
costs of remote memory accesses. 

The costs associated with multithrcading support turned out to be dominated 
by the EU ~ SU communication overhead. In order to efficiently hide latencies 
at the level of individual loads and stores this overhead has to be drastically 
reduced. This seems to be possible with appropriate hardware support. On the 
other hand, the cost of saving and restoring registers during context switches 
proved to be lower than expected. Multithreading seems to be a promising ap- 
proach for future multiprocessor systems based on off-the-shelf RISC processors. 

5 A c k n o w l e d g m e n t  

We would like to thank the Natural Sciences and Engineering Research Council 
(NSERC) for their support of this research. Also, the second author received 
funding from the Concordia FRDP and the third author received support from 
FCAR. Special thanks go to the MANNA developers at GMD-FIRST for the 
MANNA machines and for their technical support. Without them there would 
be no EARTH-MANNA system. Thanks go also to all the other members of the 
EARTH group for their contributions to the project. 

References  

1. Gall Alverson, Bob Alverson, David Callahan, Brian Koblenz, Allan Porterfield, 
and Burton Smith. Integrated support for heterogeneous parallelism. In Multi- 



128 

threaded Computer Architecture: A Summary of the State of the Art, chapter I1, 
pages 253-283. Kluwer Academic Pub., Norwell, Mass., 1994. 

2. Boon Seong Ang, Arvind, and Derek Chiou. S t a r t  the Next Generation: Inte- 
grating global caches and dataflow architecture. CSG Memo 354, Computation 
Structures Group, MIT Lab. for Comp. Sci., Aug. 1994. 

3. Gesellschaft ffir Mathematik und Datenverarbeitung mbH. MANNA Hardware 
Reference Manual. Berlin, Germany, 1993. 

4. Herbert H. J. Hum and Guang R. Gao. Supporting a dynamic SPMD model in 
a multi-threaded architecture. In Digest of Papers, 38th 1EEE Comp. Soc. Intl. 
Conf., COMPCON Spring '93, pages 165-174, San Francisco, Calif., Feb. 1993. 

5. Herbert H. J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Xi- 
nan Tang, Guang R. Gao, Phil Cupryk, Nasser Elmasri, Laurie J. Hendren, Al- 
berto Jimenez, Shoba Krishnan, Andres Marquez, Shamir Mera]i, Shashank S. 
Nemawarkar, Prakash Panangaxien, Xun Xue, and Yingchun Zhu. A design study 
of the EARTtI multiprocessor. In Proc. of the Intl. Conf. on Parallel Architectures 
and Compilation Techniques, PACT '95, Limassol, Cyprus, Jun. 1995. IFIP WG 
10.3, ACM SIGARCH, and IEEE-TCCA. To appear. 

6. Herbert H. J. Hum, Kevin B. Theobald, and Guang R. Gao. Building multi- 
threaded architectures with off-the-shelf microprocessors. In Proc. of the 8th 
Intl. Parallel Processing Syrup., pages 288-294, Cartcdn, Mexico, Apr. 1994. IEEE 
Comp. Soc. 

7. Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, 
Kourosh Gharachorloo, John Chopin, David Nakahira, Joel Baxter, Mark Horo- 
witz, Anoop Gupta, Mendel Rosenblum, and John Hennessy. The Stanford FLASH 
multiprocessor. In Proc. of the 21st Ann. lntl. Syrup. on Computer Architecture, 
pages 302-313, Chicago, Ill., Apr. 1994. 

8. Daniel Lenoski, James London, Truman Joe, David Nakahira, Luis Stevens, Anoop 
Gupta, and John Hennessy. The DASH prototype: Implementation and perfor- 
mance. In Proc. of the 19th Ann. Intl. Syrup. on Computer Architecture, pages 
92-103, Gold Coast, Australia, May 1992. 

9. Frank H. McMahon. The Livermore FORTRAN Kernels: A computer test of nu- 
merical performance ranges. Tech. Rep. UCRL-537415, Lawrence Livermore Nat. 
Lab., Livermore, Calif., Dec. 1986. 

10. Michael D. Noakes, Deborah A. Wallah, and William J. Dally. The J-Machine 
multicomputer: An architectural evaluation. In Proc. of the 20th Ann. Intl. Syrup. 
on Computer Architecture, pages 224-235, San Diego, Calif., May 1993. 

11. Peter R. Nuth and William J. Dally. Named state and efficient context switch- 
ing. In Muitithreaded Computer Architecture: A Summary oy the State of the Art, 
chapter 9, pages 201-212. Kluwer Academic Pub., Norwell, Mass., 1994. 

12. Shuichi SakaJ, Kazuaki Okamoto, Hiroshi Matsuoka, Hideo Hirono, Yuetsu Ko- 
duma, and Mitsuhisa Sato. Super-threading: Architectural and software mecha- 
nisms for optimizing parallel computation. In Cony. Proe., 1993 Intl. Con]. on 
Supercomputing, pages 251-260, Tokyo, Japan, Jul. 1993. 

13. Thorsten yon Eicken, David E. Culler, Sech Copen Goldstein, and Klaus Eric 
Schanser. Active messages: a mechanism for integrated communication and com- 
putation. In Proc. oy the 19th Ann. Intl. Syrup. on Computer Architecture, pages 
256-266, Gold Coast, Australia, May 1992. 


