
Optimization of PRAM-Programs with
Input-Dependent Memory Access*

Welf L6we

Institut fSr Programmstrukturen und Datenorganisation, Universits Karlsruhe,
76128 Karlsruhe, Germany.

Abs t rac t . There exist transformations of PRAM programs with pre-
dictable communication behavior to existing architectures. We extend
the class of tractable programs to those with communication depending
on the input. First, we define this class of programs. Second, we give
source code transformations to simplify the programs and to eliminate
indirect addresses and conditionals. Third, we show how to derive the
communication behavior statically. Fourth, we show how to compute the
mapping at compile time. Finally, we give upper time bounds for execu-
tion on existing architectures.

1 I n t r o d u c t i o n

In sequential computing the step from programming in machine code to program-
ming in machine independent high level languages has been done for decades.
Although high level programming languages are available for parallel machines
todays parallel programs highly depend on the architectures they are planed
to run on. Designing efficient parallel programs is a difficult task that can be
performed by specialists only. Porting those program to other parallel architec-
tures is nearly unpossible without a considerable losts of performance. Abstract
machine models for parallel computing like the PRAM model are accepted by
theoreticians but have no practical relevance since these models don' t take into
account properties of existing architectures.

The PRAM model consists of a shared memory and a number of processors
with local memory. Processors only communicate via their shared memory. The
computat ion steps are performed in a synchronous lock-step manner. Memory
access to different memory locations can be performed at the same time. Several
types of PRAMs are distinguished by their ability to access in parallel the same
memory location. For an overview, see [KR90]. In this paper we exclude con-
current writes. Most parallel algorithms are designed for flavors of the PRAM
models. The model has been successfully applied, because it allows to focus on
the potential parallelism of the problem at hand. In particular, there is no need
to consider a network topology and a memory distribution. For these reasons
the model is often chosen to design parallel algorithms and programs.

* An extended version of the paper can be obtained via "World Wide Web":
http://i44www.info.uni-karlsruhe.de/'loewe

244

On the other hand, almost all parallel computers and local area networks
are distributed memory architectures. As shown in [ZK93] implementations of
the PRAM model on real parallel machines are practically expensive, although
theoretically optimal results exist [Val90]. The reason is the expensive synchro-
nization, communication latency, communication overhead, and network band-
width. In the LogP machine [CKP+93], these communication costs are taken
into account. However, the number of processors are constant w.r.t, the problem
size, and the synchronization must be programmed explicitly. The architecture
dependent parameters of the LogP machine are the following. The communi-
cation latency L is the time a (small) message requires from its source to its
destination. Observe that L is an upper bound on all source-destination pairs.
The communication overhead o is the t ime required by a processor to send or re-
ceive a message. It is assumed that a processor cannot perform operations while
sending or receiving a message. The gap g is the reciprocal of the communication
bandwidth per processor. It means that when a processor has sent (or received) a
message, the next message can only be sent or received after t ime g. The number
of processors P is the last parameter. These parameters have been determined
for the CM-5 in [CKP+93] and for the IBM SP1 machine in [DMI94]. Both works
found the prediction on expected running times of programs on these machines
confirmed by practice.

However, designing programs directly for distributed, asynchronous machines
is a difficult task. Usually, it can be performed by specialists only. The programs
are often very complicated, not understandable, and not portable without a
dramatic lost of performance. It is therefore beneficial to develop a~ method
transforming programs for the PRAM into distributed programs in a systematic
way to ensure correctness. For this task, two main steps are necessary, to trans-
form the synchronous program into an equivalent asynchronous program, and to
distribute the shared memory to particular processes.

We define the class of non-oblivious programs. These programs have no pre-
dictable communication behavior. Many massively parallel algorithms 2 belong
to this class, e.g. almost all parallel algorithms on graphs are non-oblivious.
We show that non-oblivious algorithms can be transformed into a LogP pro-
gram such that the execution t ime is optimal within the LogP model. However,
the transformation itself may require much time. Therefore, we give some effi-
cient, but non-optimal transformations. Furthermore, we prove bounds for the
expected running t ime of the resulting programs.

2 Classification of Parallel Programs

For classifying parallel programs some assumptions have to be made. First, we
assume that the programs are executed at the statement level, and that the run-
ning time is measured in the number of assignments executed. Second, the only

2 A program is massively parallel itf the number of required processors increases with
the size of the input.

245

composite data structures we use.are arrays. This is no restriction as the shared
memory may be considered as a n array of integers. We allow the introduction
of several arrays. Third, inputs are usually measured by their size. We use the
overall number of single array elements. Finally, PA(n) denotes the maximum
number of processors used by an algorithm A on inputs of size n and TA(n)
denotes the worst-case running t ime of algorithm A on inputs of size n. We say
that processor i communicates at time t with processor j iff there is a memory
cell m which was either written by processor j at t ime t ~ or t ~ = 0, no processor
writes into m between time t ~ and time t, and processor i reads at t ime t from
m. We denote this by the predicate comm(i, t, j, t~). Conditions in conditional
statements and loops are treated as assignments but without writing into the
shared memory.

D e f i n i t i o n 1. A communication structure of a PRAM algorithm A for an input
x of size n is a directed acyclic graph GA,x -" (VA,x, EA,x), where

VA,. = {(i , t) :O 5 i < P a (n) -- 1,0 < t <TA(n)},

EA,x = {((j, t ') , (i, t}) : t ' < t A comm(i, t, j, t ')}.

A communication scheme of a PRAM algorithm A for inputs of size n is a
directed acyclic graph G*A,n, that is the union of all communication structures
of A with a valid input of size n.

D e f i n i t i o n 2 . A parallel algorithm is called oblivious iff its communicationstruc-
ture and its communication scheme are the same for all inputs the same size.
Otherwise, it is called non-oblivious.

Important problems where non-oblivious implementations may be desired are
e.g. operations on sparse matrices, adaptive multi-grid-methods for the numerical
solution of partial differential equations, graph algorithms. Observe that none
of these algorithms is implemented to work in parallel. In fact, engineers prefer
to implement these problems mainly sequentially as the sequential execution
t ime is currently better than the execution time of a parallel implementation.
Even Valiants PRAM simulation [Val90] that yields theoretically optimal results
requires approximately 10 - 20ms for one PRAM step on a MASPAR [ZK93].

3 D e r i v i n g C o m m u n i c a t i o n S c h e m e s

In this section we show how the communication scheme can be derived statically.
From definition 1 it follows immediately that the communication structure of an
oblivious program only depends on the size of the input and its communication
scheme is equal to this communication structure. If we knew the size of the input
and the fact that the program is oblivious, we could derive the communication
structure just by a (synchronous) sample execution of the program.

246

If the program is non-oblivious there are some communicat ions depending on
the input of the program. In this case we assume tha t all possible communica-
tion occurs. All further t ransformations are based on the following assumptions:
First, the input size n is known at compile t ime 3, and second, the program rep-
resentation is a control flow graph. We assume tha t the control flow graph is a
directed graph CFG = (V, E) whose vertices are p rogram points and (vl, v2) e E
iff there is a direct control flow from Vl to v2. There are two types of vertices:
AND-vertices arise from a p a r d o , i.e. the control flows to all successors, and
OR-vertices arising from loops or conditional s tatements, i.e. the control flows
to one successor.

First, we show how to decide whether a parallel p rogram is oblivious or not.
While deciding this we simplify the program. Second, we include a transfor-
mat ion making some non-oblivious programs oblivious. Finally, we derive the
communication scheme from the simplified, t ransformed program. The basic
techniques applied on oblivious programs can be found in [ZL94].

3.1 Simplifying P R A M P r o g r a m s

Our goal is to t ransform the CFG into an acyclic directed graph whose vertices
are AND-vertices by loop unrolling, procedure inlining, and recursion elimination 4,
see algorithm 1. The size of the resulting code is l imited by the work done by
the PRAM algorithm. Therefore, the size of the code is at most O(T(n) • P(n)).
Hence, if the original algorithm is polynomial in the required t ime and proces-
sors, the size of the resulting code is also polynomial.

Zemma 3. Let P be a parallel program. If constant folding, loop unwinding,
recursion elimination, and procedure inlining is successfully applied to P, then
the control flow graph of the transformed program is acyclic.

Proof. As there is no loop and no recursion in the t ransformed program, the
corresponding CFG must be acyclic.

3 For many applications this is no restriction (assume e.g. the data is generated by
sensors). For others there exist design methods for reducing the required number
of processors to a constant (as e.g. for all divide & conquer algorithms). As a side
effect, this constant equals to the input size of the resulting program. Finally, if
the input size is bound by an upper and a lower limit it is possible to perform the
following optimizations for all sizes in between these limits. If G~,, C G* A,rn,m > n

the optimizations can be implemented efficiently, i.e. schemes needn't be optimized
redundantly.

4 For non-recursive procedures and functions, procedure inlining is no problem. When
all recursions can be eliminated, then procedure inllning is no problem. Sometimes it
is not possible to check statically the number of recursions or iterations, even if it is
constant or a function of the input size that is constant, as well. However, we believe
that this case doesn't happen too often in practice. In Fortran-programs most of the
loops are for-loops. For non-for loops and recursion techniques like [FSZ91, Zim91]
of automatic complexity analysis can be used to derive the number of iterations of
a loop and recursive calls of a recursive procedure, respectively.

247

A l g o r i t h m 1. Simplify a P R A M Program and Check Obliviousness.

(1) apply constant folding to P;
(2) eliminate recursion from P;
(3) unwind loops in P;
(4) inline all procedures of P;
(5) r e p e a t
(6) apply constant folding to P;
(7) eliminate dead code from P;
(8) un t i l P does not change;
(9) compute control flow graph (CFG) for P;
(10) mark each vertex v if v is not pa rdo ;
(11) compute for each marked v:
(12) number m~ of marked vertices;
(13) on the longest path to v in CFG;
(14) label each marked v with t~ where:
(15) PRAM completion time t~ = my + 1;
(16) i f CFG has an OR-vertex V CFG contains indirect addressing
(17) t h e n output CFG and P is not oblivious;
(18) else output CFG and P is oblivious;
(19) fl;

3 .2 R e d u c i n g t h e N o n - o b l i v i o u s n e s s

After the above t ransformat ions a parallel p rogram m a y contain indirect ad-
dresses on the left side of assignments, as e.g. in Tree Contrac t ion. Suppose
processor i executes an assignment a[f(a, i)] := expr where expr is an expres-
sion and f (a, i) is an index funct ion wi thout side-effects (especially it doesn ' t
raise exceptions like a division by 0). We t ransform the above assignment into:

dis t r ibuted

foral l j := 0 to la[- 1 do in para l le l
i f j = f(a, i) t h e n

a[j] := expr;
end; - i f

end; - f o r a l l

where j doesn ' t occur neither in f (a, i) nor in expr and lal is the size of the
shared address space. We add this t ransformat ion after line (4) of a lgor i thm 1 ~.

L e m m a 4 . Let P be a simplified P R A M program. The above transformation of
P doesn't change its semantics.

s This transformation doesn't make the program more oblivious since the conditional
statement cannot be eliminated by constant folding because f(a, i) is not a constant.
With a similar transformation we could eliminate the indirect addresses on the right
side of assignments, as well. We don't do so. As we will see, these indirect addresses
do not cause an all to all communication in the resulting distributed asynchronous
program. Hence, it doesn't make sense to waste processors or time.

248

Proof. Because f (a, i) is a function without side-effects we can call it arbitrari ly
often. This function f (a, i) returns an index of a. There are only la I many possible
return values of f (a, i). Hence, we can check all indices if they are equal to the
return value of f(a, i) and execute the assignment for the index equal to this
value. There are no dependencies between all these checks, hence, we can execute
them in parallel.

Note, that a program running on p processors before this t ransformation requires
at most p• la] processor afterwards. Of course, instead of the p a r d o s ta tement we
could use a f o r loop. In this case our algori thm doesn't require more processors
but t ime t + lal if t is the running t ime of the original program. However, we
save an all to all communication in the resulting asynchronous program.

A parallel program may contain a conditional checking some predicate on
the state of the shared memory. E.g. the Game of Life checks how many of
the neighbor cells are dead. These conditionals can be removed by pessimistic
assumption that each branch has to be computed for computing the conditional
s tatement [ZL94].

3.3 Deriving Communication S c h e m e s

After the t ransformations given in the last sections the control flow graph of
PRAM programs only contain p a r d o and assignment vertices. The only re-
maining source of non-obliviousness in these programs is indirect addressing on
the left hand side of assignments.

A l g o r i t h m 2. Compute a Communication Scheme.

t = 0 : Go=(Vo,Eo) whereVo = { (a [i] , 0) : 0 < i < p } andEo = 0
t > 0 : Gt = (Vt, Et) where Vt = Vt-1 U Vt' and Et = Et-1 U E~ U E~'

v : = {(or, t) : 3v e c F G : t~ = t ^ v c o n t a i n s x : = c}
E~ = {((y , t ') , (z , t)): Sv ~ CFG : t~ = t ^ v contains x := c ^

y is operand in c ^ t ' = max{r: (y, t-) E Vt-1 }
E~' = { ((a[i] , t ') , (or,t)): 0 < i < p ^ eoristsv ~ C F G :

t~ = t ^ v contains or := c ^ a[f(a)] is operand in c ^
t ' = max{g: (a[i], t-) e �88

Let G* = G,~ if m is the highest label of all vertices in CFG.

Theorem g. Let P be a simplified P R A M program without indirect addressing
on the left hand side of assignments and without conditionals. Algorithm 2 com-
putes a graph containing all vertices and edges of the communication scheme G*
of P.

Proof. The proof is by induction on the steps of the PRAM program: Go is
computed correctly since it contains a vertex for each memory cell. There is no
communication at PRAM step 0. Therefore, E~ is empty. We assume tha t Gt-1
is computed correctly. Vertices in the C F G labeled with t correspond to the
PRAM assignment executed at t ime t. This labeling is well-defined since the
C F G is acyclic by l emma 3. Hence, for each PRAM processor tha t executes an

249

assignment at t ime t a vertex v is added to G,. If a memory cell is read in the
left hand side of the assignment an edge from the vertex u corresponding to the
last assignment tha t wrote this cell to v is added to the set of edges of G,. Hence,
all oblivious communicat ion to vertices v corresponding assignments executed at
t ime t have a corresponding edge in G,. If the left side of an assignment executed
at t ime t contains an indirect address, edges from all vertices corresponding
to the last write accesses to each memory cell is added. Hence, for all non-
oblivious communicat ions tha t possibly occur at t ime t there exist an edge in
Gt. Therefore, G~ is a communicat ion scheme of the PRAM program executing
the first t steps of P . Let m be the highest label in CFG. There is no assignment
executed at t ime t > m. Therefore, the construction of G terminates after m
steps. Tha t completes the proof.

4 Compiling Non-oblivious Programs

For transforming PRAM programs to LogP programs two tasks must be per-
formed: first consideration of the asynchronous execution model and second, the
distribution of the shared memory. We construct the communication scheme
where every node corresponds to an assignment:

air(i, a)] := ~(a[fl(i, a)] , . . . , a[fm(i, a)]).

4.1 Program Transformation

First, we discuss the index functions in more detail. Therefore, we number the
nested indirections in addressing. Observe, tha t all nestings of indirect addresses
end up in a direct address, i.e. with a index function independing of the mem-
ory 's state. We extend the above assignment by the number of nested indirect
addresses:

a[f~ a)] := q~(a[f~(i, a)] , . . . , air~ a)])

where fJ(i, a) is defined as:

j �9 j+l �9 j+ l .
kh~ (z, a[f~, 1 (z, a)] , . . . , a[f~,, (L a)])

if index expression ~ contains further indirect addresses. Otherwise it simplifies
j �9

to f~ (~). Since for all nested indirect addresses there exist direct addresses, the
communicat ion structure can be computed partially. For oblivious communica-
tions of a non-oblivious program sender and receiver can be computed at compile
time. For non-oblivious communicat ions they have to be computed at run time.
After having received all data the expression ~ can be computed. If the left hand
side of the assignment doesn' t contain indirect addressing the result can be sent
via a channel to the next process as in oblivious programs. If it does, the next
process has to be computed at run t ime and a message has to be sent to this

250

process. We assume that there is no indi rec t addressing on the left side of the
assignments. Hence, an assignment A has the form:

a[f~ := ~(a[f~ a)] , . . . , a[f~ a)]).

The necessary transformations of an assignment A executed at PRAM-time t is
shown below.

A l g o r i t h m 3. Remove Indirect Addresses.

(1) r e p e a t

(2) substitute a[f~(i, a)] with process[f~(i, a)].get_arg(f~ t);
J i k~(i,a rej+l"" j+l �9 . (3) substitute f~ (, a) with tJk,1 (z,a)] ,a[f~, n (z,a)]),

(4) unti l A does not change;
(5) r e p e a t

(6) substitute a[f~(i)] with ay~(i) ;

(7) unti l A does not change;

P r o c e s s a[f~ :-- q~(a[f~ a)], . . ., a [f~ (i, a)]).

(1) p r o c e s s (f~ t) - simulates m executed by processor f0~ at time t
(2) en t ry start is
(3) [all(i) �9 �9 �9 af,~(i)] : : [r ecv(f l (i), tl) . . . recv(Sm(i), tin)]

- - c o m m (f ~ f l (i) , t l )

A transformed by algorithm 3;
[send(a/g(0, (,1, r l)) ' . , send(aloo(i), (,n, r,~))]; - -comm(,, v, f~ t)

end start;

(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

e n t r y get_arg(i, r) is

send(afoo(O , (i, r));
end get_arg;

e n d - - p r o c e s s (f~ t)

Each of the transformed assignments A is associated to a single process (f0 ~ (i), t).
Additionally, the initial state of each memory cell must be provided by separate
processes. For oblivious communications we use a channel-oriented model. We
assume that each edge in the communication structure is a channel through
which communication has to go. The semantics of recv(f~(i), t~) is that the
process receives the data sent by process (f~ (i), t~). The receiving of data and the
assignment to the local variables ayl(i) . . .a],~(0 is executed in arbitrary order.
The send(data, (t, 7-)) operation is dual to the receive operation, i.e. process (i, t)
sends data to process (t, v). A recv operation is terminated if it received the data.
Furthermore, we assume that processes can send without any synchronization
with the receiving processes, and that the channels are safe.

L e m m a 6. Let P be a simplified P R A M program. Af ter having applied algo-
rithm 3 to P it doesn't contain any indirect access to the shared memory.

Proof. The array process will contain the addresses of all processes that possibly
contain an argument for computing A. In contrast to array a, array process can

251

be computed statically, since we know all processes at compile time. The length
of process is at most equal to the length of a. The message get_arg(f~ t) sent
to a process returns the argument stored in this process to the sender, i.e. to
process (f~ (line 4). The index functions f can be computed at compile
t ime since they depend only on i and not on the array a (line 12).

The or e m 7. Let P be a simplified P R A M program. The processes (f~ t) can
be executed asynchronously and with memory. They compute the same function
as the original P R A M program did.

Proof. Assuming that constant folding, loop unrolling and recursion elimination
have been applied complete and correctly to P. Then P has a finite number of
statements, because o f l emma 3. Therefore, all indirect addresses on the left hand
side of assignments and all conditionals can be eliminated. Because of lemma 4
these transformations are correct also. Therefore, the transformed PRAM pro-
gram is semantical equivalent to the original one. By lemma 6 all accesses to the
shared memory can be eliminated. Hence, each process must only contain the
array cell that it writes. Therefore, the shared memory can be distributed. The
correctness of the asynchronous execution is proven by induction on a topologi-
cal ordering of the vertices in the communication scheme G* of P. By theorem 5
G* can be computed statically and contains all possible data dependencies of
P. A vertex (i, 0) in G* corresponds to a process providing a[i] at time 0. A
vertex (i, t), t > 0 in G* corresponds to a process (f0 ~ (i), t). We label each vertex
that has been computed as finished. We assume that processes (i, 0) contain the
correct initial value of the array cell a[i], i.e. all vertices with depth 0 in G* can
be labeled initially. A vertex v in G* can be computed if all data needed in v
is available. By induction hypothesis all predecessors of v are labeled (oblivious
communication) and have sent the correct values to v (oblivious communication).
Hence, the processors containing further values needed in v can be computed.
Also by induction hypothesis all potential predecessors of v are labeled (non-
oblivious communication). Therefore, v can order these values and computes
correctly. After computation it sends the correct value to its (oblivious) succes-
sors and provides this value for further (non-oblivious) requests, v can be labeled
as finished, as well.

I, e m m a 8. Let d be the maximal depth of indirect addresses in a program P
and dg the maximal degree of vertices in G*(P). The over all time Lma= for
communication from a vertex to its direct successor (in G*) is at most:

i,nax < ((1 + 2d) • (i + 20 + (dg - 2) • max[o, g]).

Proof. Assume that a message is the last to be sent from a vertex. Then there
are out - degree - 1 messages sent before. Hence, out - degree - 1 gaps have to
be guaranteed. Then, sending the message takes time o and the communication
delay is L. The same holds for receiving the message where in-degree -1 gaps
have to be guaranteed. After one necessary oblivious communication for each
nested indirect addressing two messages have to be sent in sequence.

252

Theorem 9. Let P be a parallel program whose communication scheme G* has
diameter T. Let C be the maximal computation time for the vertices in G*. Its
execution time is at most: Trna~ <_ (T - 1) • L ,~= + T • C.

Proof. On the longest pa th T tasks have to be computed, T - 1 communicat ions
occur sequentially. Each computat ion requires at most t ime C, each communi-
cation requires at most t ime L m ~ . There is no waiting necessary because we
chose the longest path.

4.2 Program Optimization

Merging some of the processes into one processor saves t ime required for com-
munication. On the other hand, the degree of parallelism is decreased. In fact
we cluster the computat ions done in the vertices of a communicat ion scheme
onto the processors of the LogP machine such tha t the execution t ime is min-
imal. We can implement any oblivious PRAM program as an opt imal LogP
program w.r.t, its computat ion time. However, the t ransformations themselves
are exponential. In [PY90] Papadimit r iou and Yannakakis showed tha t finding
an opt imal clustering is NP-hard, even if o = g = 0 and P = cr We can there-
fore not expect to find an efficient and opt imal t ransformation. I t is also known
that approximative solutions which are bet ter than 2 • Toptirnat(G) cannot be
found in polynomial t ime when o = g = 0, unless P = N P . However, in [LZ95]
it is proven tha t the opt imal solution can be found in polynomial t ime if G
is coarse grained. Furthermore, Gerasoulis and Yang demonstrated in [GY93]
that a solution guaranteeing 2 • TIMEopt(G) without vertex duplications can
be found for coarse grained communicat ion structures assuming that o = g = 0.
All these works assumed oblivious algorithms. However, we can extend the re-
suits to non-oblivious algorithms. Therefore, we define the notion of granularity
of communication schemes. Informly speaking, the granulari ty of a communica-
tion scheme G* is the ratio of computat ion and communicat ion costs in G* on
a distinct parallel machine.

Definition 10. Let PRED, be the set of all direct predecessors u of a vertex v in
a communication scheme G*. Let L , ,~ (u , v) be the maximal overall communi-
cation cost for sending a message from vertex u to vertex v (including overheads
and gaps). Let C~ be the t ime for computing u. The granularity of a vertex is
defined as

min {C=}
u fi P R E D g(V) =

max {Lmax(U,V)}"
u E P R E D ,

and the granulari ty of a communicat ion scheme is defined as g(G*) = min {g(v) }.
v E G *

G* is coarse grained if g(G*) > 1, otherwise it is called fine grained.

Note, that the granulari ty of a communication schemes can be computed at
compile t ime even if the program is non-oblivious. In contrast to other more

253

qualitative definitions of granularity we can give upper bounds for the execution
time of a program on a parallel machine in terms of the granularity of the
corresponding communication schemes.

Theorem l l . Any clustering of a communication scheme G* computing only
vertices of the same path in G* on one processor leads to a program running in
at most: Tcl~ster <_ (1 + g - ~) • Topt,maz(G*).

Proof. Let :P be the path from a vertex vi with idgv~ -- 0 to a vertex Vo with
odg~o = 0 with the maximal sum of computation times of its vertices and com-
munication delay between these vertices. For the optimal clustering of G* it
holds: Toptirna,(G*) > Z Cv. Let Lmaz(V) -- Lmaz(U, v) where u is the immedi-

vfi'P
ate predecessor of v in path :P. Set Lma~(vi) = O. For the naive implementation
of G* it holds:

T..,.o(G*) _< C~. + ~ C. + Lm..(v) <_ C.o + ~ C.(, + Lm..(V)C~)
vET ~ v E P

1 1 ZC "

1
<_ (I + g-~)(Cvo + Z Ca) <_ (I + g--(-~) Z Cv

v 6 ~ v f i P

< (1 + g - ~) x To,,,,a,(G*)

Because a clustering along the paths in G* cannot increase the running time
compared to the naive implementation, the proof is complete.

Note, that for coarse grained communication schemes G* the time bound reduces
to 2 x Toptimal(G*) even if o # 0, g ~ 0, and the program is non-oblivious.
Heuristic solutions for clustering communication structures where g # 0 and
o # 0 can be found in [ZL94]. The techniques for clustering communication
structures can be applied to communication schemes without any modifications.

5 Conclusions

We showed for another subclass of parallel programs for PRAMs that the gap
between theory and practice can be bridged by mapping this class onto an asyn-
chronous machine with distributed memory - the LogP machine. This class of
non-oblivious parallel program is characterized by their communication behav-
ior which varies for inputs of size n. Prom a practical point of view this class is
large. It contains for example basic techniques as for instance pointer jumping,
pebble game and tree contraction. Almost all parallel algorithms on graphs are
non-oblivious. If the the input size of a program is limited before compiling,
its communication scheme can be derived statically. With this information, we
are able to include the transformation from non-oblivious PRAM programs to
distributed programs running existing parallel machines into compilers. There-
fore, the clustering and scheduling algorithms for mapping oblivious PRAM

254

programs onto the LogP machine can be applied for non-oblivious PRAM pro-
grams, as well. Hence, for correct execution of non-oblivious PRAM programs,
it is not necessary to perform expensive the PRAM-simulat ion. Additionally,
we can give upper t ime bounds for execution for the resulting programs on ex-
isting architectures. Future work will consider the behavior of clustering and
scheduling heuristics applied to the communicat ion schemes of several graph al-
gorithms. Beside the upper t ime bounds it would be interesting to determine
average running t imes of the resulting programs. Therefore, we want to label
the non-oblivious communications with the possibility of their occurrence.

R e f e r e n c e s

[CKP+93] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schanser, E. Santos,
R. Subramonian, and T. yon Eicken. LogP: Towards a realistic model of
parallel computation. In 4th A CM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPOPP 93), pages 1-12, 1993. published
in: SIGPLAN Notices (28) 7.

[DMI94] B. Di Martino and G. Ianello. Parallelization of non-simultaneous iterative
methods for systems of linear equations. In LNCS 854, Parallel Processing:
CONPAR'g4-VAPP VI, pages 254-264. Springer, 1994.

[FSZ91] P. Flajolet, B. Salvy, and P. Zimmermann. Average case analysis of algo-
rithms. Theoretical Computer Science, 1991.

[GY93] A. Gerasoulis and T. Yang. On the granularity and clustering of directed
acyclic task graphs. IEEE Transactions on Parallel and Distributed Systems,
4:686-701, june 1993.

[KR90] R.M. Karp and V. Ramachandran. Parallel algorithms for shared memory
machines. In Handbook o] Theoretical Computer Science Vol. A, pages 871-
941. MIT-Press, 1990.

[LZ95] W. LSwe and W. Zimmermann. On finding optimal clusterings of
task graphs. In Aizu International Symposium on Parallel Algo-
rithm/Architecture Synthesis. IEEE Computer Society Press, 1995.

[PY90] C.H. Papadimitrou and M. Y~nnakakis. Towards an architecture-
independent analysis of parallel algorithms. SIAM Journal on Computing,
19(2):322 - 328, 1990.

[Val90] L.G. Valiant. General purpose paxMlel architectures. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science Vol. A, pages 945-971.
MIT-Press, 1990.

[Zim91] Wolf Zimmermann. The automatic worst case analysis of parallel programs:
Simple parallel sorting and algorithms on graphs. Technical Report TR-91-
045, International Computer Science Institute, August 1991.

[ZK93] Wolf Zimmermann and Holger Kumm. On the implementation of virtual
shared memory. In Programming Models for Massively Parallel Computers,
pages 172-178, 1993.

[ZL94] W. Zimmermaan and W. LSwe. An approach to machine-independent par-
allel programming. In LNCS 854, Parallel Processing: CONPAR'94- VAPP
VI, pages 277-288. Springer, 1994.

