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Abs t rac t .  There exist transformations of PRAM programs with pre- 
dictable communication behavior to existing architectures. We extend 
the class of tractable programs to those with communication depending 
on the input. First, we define this class of programs. Second, we give 
source code transformations to simplify the programs and to eliminate 
indirect addresses and conditionals. Third, we show how to derive the 
communication behavior statically. Fourth, we show how to compute the 
mapping at compile time. Finally, we give upper time bounds for execu- 
tion on existing architectures. 

1 I n t r o d u c t i o n  

In sequential computing the step from programming in machine code to program- 
ming in machine independent high level languages has been done for decades. 
Although high level programming languages are available for parallel machines 
todays parallel programs highly depend on the architectures they are planed 
to run on. Designing efficient parallel programs is a difficult task that  can be 
performed by specialists only. Porting those program to other parallel architec- 
tures is nearly unpossible without a considerable losts of performance. Abstract 
machine models for parallel computing like the PRAM model are accepted by 
theoreticians but have no practical relevance since these models don' t  take into 
account properties of existing architectures. 

The PRAM model consists of a shared memory and a number of processors 
with local memory. Processors only communicate via their shared memory. The 
computat ion steps are performed in a synchronous lock-step manner.  Memory 
access to different memory locations can be performed at the same time. Several 
types of PRAMs are distinguished by their ability to access in parallel the same 
memory  location. For an overview, see [KR90]. In this paper we exclude con- 
current writes. Most parallel algorithms are designed for flavors of the PRAM 
models. The model has been successfully applied, because it allows to focus on 
the potential parallelism of the problem at hand. In particular, there is no need 
to consider a network topology and a memory distribution. For these reasons 
the model is often chosen to design parallel algorithms and programs. 

* An extended version of the paper can be obtained via "World Wide Web": 
http://i44www.info.uni-karlsruhe.de/'loewe 
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On the other hand, almost all parallel computers and local area networks 
are distributed memory architectures. As shown in [ZK93] implementations of 
the PRAM model on real parallel machines are practically expensive, although 
theoretically optimal results exist [Val90]. The reason is the expensive synchro- 
nization, communication latency, communication overhead, and network band- 
width. In the LogP machine [CKP+93], these communication costs are taken 
into account. However, the number of processors are constant w.r.t, the problem 
size, and the synchronization must be programmed explicitly. The architecture 
dependent parameters of the LogP machine are the following. The communi- 
cation latency L is the time a (small) message requires from its source to its 
destination. Observe that  L is an upper bound on all source-destination pairs. 
The communication overhead o is the t ime required by a processor to send or re- 
ceive a message. It is assumed that  a processor cannot perform operations while 
sending or receiving a message. The gap g is the reciprocal of the communication 
bandwidth per processor. It means that  when a processor has sent (or received) a 
message, the next message can only be sent or received after t ime g. The number 
of processors P is the last parameter.  These parameters have been determined 
for the CM-5 in [CKP+93] and for the IBM SP1 machine in [DMI94]. Both works 
found the prediction on expected running times of programs on these machines 
confirmed by practice. 

However, designing programs directly for distributed, asynchronous machines 
is a difficult task. Usually, it can be performed by specialists only. The programs 
are often very complicated, not understandable, and not portable without a 
dramatic lost of performance. It is therefore beneficial to develop a~ method 
transforming programs for the PRAM into distributed programs in a systematic 
way to ensure correctness. For this task, two main steps are necessary, to trans- 
form the synchronous program into an equivalent asynchronous program, and to 
distribute the shared memory to particular processes. 

We define the class of non-oblivious programs. These programs have no pre- 
dictable communication behavior. Many massively parallel algorithms 2 belong 
to this class, e.g. almost all parallel algorithms on graphs are non-oblivious. 
We show that  non-oblivious algorithms can be transformed into a LogP pro- 
gram such that  the execution t ime is optimal within the LogP model. However, 
the transformation itself may require much time. Therefore, we give some effi- 
cient, but non-optimal transformations. Furthermore, we prove bounds for the 
expected running t ime of the resulting programs. 

2 Classification of Parallel Programs 

For classifying parallel programs some assumptions have to be made. First, we 
assume that  the programs are executed at the statement level, and that  the run- 
ning time is measured in the number of assignments executed. Second, the only 

2 A program is massively parallel itf the number of required processors increases with 
the size of the input. 
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composite data structures we use.are arrays. This is no restriction as the shared 
memory may be considered as a n  array of integers. We allow the introduction 
of several arrays. Third, inputs are usually measured by their size. We use the 
overall number of single array elements. Finally, PA(n) denotes the maximum 
number of processors used by an algorithm A on inputs of size n and TA(n) 
denotes the worst-case running t ime of algorithm A on inputs of size n. We say 
that  processor i communicates at time t with processor j iff there is a memory 
cell m which was either written by processor j at t ime t ~ or t ~ = 0, no processor 
writes into m between time t ~ and time t, and processor i reads at t ime t from 
m. We denote this by the predicate comm(i, t, j, t~). Conditions in conditional 
statements and loops are treated as assignments but  without writing into the 
shared memory. 

D e f i n i t i o n  1. A communication structure of a PRAM algorithm A for an input 
x of size n is a directed acyclic graph GA,x -" (VA,x, EA,x), where 

VA,.  = {( i , t ) :O 5 i < P a ( n )  -- 1,0 < t <TA(n)},  

EA,x = {((j, t ') ,  (i, t}) :  t '  < t A comm(i, t, j, t ')}. 

A communication scheme of a PRAM algorithm A for inputs of size n is a 
directed acyclic graph G*A,n, that  is the union of all communication structures 
of A with a valid input of size n. 

D e f i n i t i o n 2 .  A parallel algorithm is called oblivious iff its communicationstruc- 
ture and its communication scheme are the same for all inputs the same size. 
Otherwise, it is called non-oblivious. 

Important  problems where non-oblivious implementations may be desired are 
e.g. operations on sparse matrices, adaptive multi-grid-methods for the numerical 
solution of partial differential equations, graph algorithms. Observe that  none 
of these algorithms is implemented to work in parallel. In fact, engineers prefer 
to implement these problems mainly sequentially as the sequential execution 
t ime is currently better  than the execution time of a parallel implementation. 
Even Valiants PRAM simulation [Val90] that  yields theoretically optimal results 
requires approximately 10 - 20ms for one PRAM step on a MASPAR [ZK93]. 

3 D e r i v i n g  C o m m u n i c a t i o n  S c h e m e s  

In this section we show how the communication scheme can be derived statically. 
From definition 1 it follows immediately that  the communication structure of an 
oblivious program only depends on the size of the input and its communication 
scheme is equal to this communication structure. If we knew the size of the input 
and the fact that  the program is oblivious, we could derive the communication 
structure just  by a (synchronous) sample execution of the program. 
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If  the program is non-oblivious there are some communicat ions depending on 
the input of the program. In this case we assume tha t  all possible communica- 
tion occurs. All further t ransformations are based on the following assumptions: 
First, the input size n is known at compile t ime 3, and second, the program rep- 
resentation is a control flow graph. We assume tha t  the control flow graph is a 
directed graph CFG = (V, E) whose vertices are p rogram points and (vl, v2) e E 
iff there is a direct control flow from Vl to v2. There are two types of vertices: 
AND-vertices arise from a p a r d o ,  i.e. the control flows to all successors, and 
OR-vertices arising from loops or conditional s tatements,  i.e. the control flows 
to one successor. 

First, we show how to decide whether a parallel p rogram is oblivious or not. 
While deciding this we simplify the program. Second, we include a transfor- 
mat ion making some non-oblivious programs oblivious. Finally, we derive the 
communication scheme from the simplified, t ransformed program.  The basic 
techniques applied on oblivious programs can be found in [ZL94]. 

3.1 Simplifying P R A M  P r o g r a m s  

Our goal is to t ransform the CFG into an acyclic directed graph whose vertices 
are AND-vertices by loop unrolling, procedure inlining, and recursion elimination 4, 
see algorithm 1. The size of the resulting code is l imited by the work done by 
the PRAM algorithm. Therefore, the size of the code is at most  O(T(n) • P(n)). 
Hence, if the original algorithm is polynomial  in the required t ime and proces- 
sors, the size of the resulting code is also polynomial.  

Zemma 3. Let P be a parallel program. If  constant folding, loop unwinding, 
recursion elimination, and procedure inlining is successfully applied to P, then 
the control flow graph of the transformed program is acyclic. 

Proof. As there is no loop and no recursion in the t ransformed program,  the 
corresponding CFG must  be acyclic. 

3 For many applications this is no restriction (assume e.g. the data is generated by 
sensors). For others there exist design methods for reducing the required number 
of processors to a constant (as e.g. for all divide & conquer algorithms). As a side 
effect, this constant equals to the input size of the resulting program. Finally, if 
the input size is bound by an upper and a lower limit it is possible to perform the 
following optimizations for all sizes in between these limits. If G~,,  C G* A,rn,m > n 

the optimizations can be implemented efficiently, i.e. schemes needn't be optimized 
redundantly. 

4 For non-recursive procedures and functions, procedure inlining is no problem. When 
all recursions can be eliminated, then procedure inllning is no problem. Sometimes it 
is not possible to check statically the number of recursions or iterations, even if it is 
constant or a function of the input size that is constant, as well. However, we believe 
that this case doesn't happen too often in practice. In Fortran-programs most of the 
loops are for-loops. For non-for loops and recursion techniques like [FSZ91, Zim91] 
of automatic complexity analysis can be used to derive the number of iterations of 
a loop and recursive calls of a recursive procedure, respectively. 
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A l g o r i t h m  1. Simplify a P R A M  Program and Check Obliviousness. 

(1)  apply constant folding to P; 
(2)  eliminate recursion from P; 
(3 )  unwind loops in P;  
(4 )  inline all procedures of P;  
(5)  r e p e a t  
(6 )  apply constant folding to P;  
(7)  eliminate dead code from P;  
(8 )  un t i l  P does not change; 
(9 )  compute control flow graph (CFG) for P;  
(10) mark each vertex v if v is not pa rdo ;  
(11) compute for each marked v: 
(12) number m~ of marked vertices; 
(13) on the longest path to v in CFG; 
(14) label each marked v with t~ where: 
(15) PRAM completion time t~ = my + 1; 
(16) i f  CFG has an OR-vertex V CFG contains indirect addressing 
(17) t h e n  output CFG and P is not oblivious; 
(18) else output CFG and P is oblivious; 
(19) fl; 

3 .2  R e d u c i n g  t h e  N o n - o b l i v i o u s n e s s  

After  the above t ransformat ions  a parallel p rogram m a y  contain indirect ad- 
dresses on the  left side of assignments,  as e.g. in Tree Contrac t ion.  Suppose 
processor i executes an assignment  a[f(a, i)] :=  expr where expr is an expres- 
sion and f (a,  i) is an index funct ion wi thout  side-effects (especially it doesn ' t  
raise exceptions like a division by 0). We t ransform the above assignment  into: 

dis t r ibuted 

foral l  j :=  0 to  la[ - 1 do  in  para l le l  
i f  j = f(a, i) t h e n  

a[j] :=  expr; 
end;  - i f  

end;  - f o r a l l  

where j doesn ' t  occur neither in f (a,  i) nor in expr and lal is the size of  the 
shared address space. We add this t ransformat ion  after line (4) of  a lgor i thm 1 ~. 

L e m m a 4 .  Let P be a simplified P R A M  program. The above transformation of 
P doesn't change its semantics. 

s This transformation doesn't make the program more oblivious since the conditional 
statement cannot be eliminated by constant folding because f(a, i) is not a constant. 
With a similar transformation we could eliminate the indirect addresses on the right 
side of assignments, as well. We don't  do so. As we will see, these indirect addresses 
do not cause an all to all communication in the resulting distributed asynchronous 
program. Hence, it doesn't make sense to waste processors or time. 
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Proof. Because f (a,  i) is a function without side-effects we can call it arbitrari ly 
often. This function f (a,  i) returns an index of a. There are only la I many  possible 
return values of f (a,  i). Hence, we can check all indices if they are equal to the 
return value of f(a,  i) and execute the assignment for the index equal to this 
value. There are no dependencies between all these checks, hence, we can execute 
them in parallel. 

Note, that  a program running on p processors before this t ransformation requires 
at most  p•  la] processor afterwards. Of  course, instead of the p a r d o  s ta tement  we 
could use a f o r  loop. In this case our algori thm doesn't  require more processors 
but t ime t + lal if t is the running t ime of the original program.  However, we 
save an all to all communication in the resulting asynchronous program. 

A parallel program may  contain a conditional checking some predicate on 
the state of the shared memory.  E.g. the Game of Life checks how many  of 
the neighbor cells are dead. These conditionals can be removed by pessimistic 
assumption that  each branch has to be computed for computing the conditional 
s tatement  [ZL94]. 

3.3 Deriving Communication S c h e m e s  

After the t ransformations given in the last sections the control flow graph of 
PRAM programs only contain p a r d o  and assignment vertices. The only re- 
maining source of non-obliviousness in these programs is indirect addressing on 
the left hand side of assignments. 

A l g o r i t h m  2. Compute a Communication Scheme. 

t = 0 :  Go=(Vo,Eo)  whereVo = { ( a [ i ] , 0 ) : 0 < i < p }  andEo = 0  
t > 0 : Gt = (Vt, Et) where Vt = Vt-1 U Vt' and Et = Et-1 U E~ U E~' 

v :  = {(or, t ) :  3v e c F G :  t~ = t ^ v c o n t a i n s  x : =  c} 
E~ = {((y , t ' ) , (z , t ) ):  Sv ~ CFG : t~ = t ^ v  contains x := c ^ 

y is operand in c ^ t '  = max{r:  (y, t-) E Vt-1 } 
E~' = { ( (a[ i ] , t ' ) ,  (or,t)): 0 < i < p ^ eoristsv ~ C F G :  

t~ = t ^ v contains or := c ^ a[f(a)] is operand in c ^ 
t ' =  max{g: (a[i], t-) e �88  

Let G* = G,~ if m is the highest label of all vertices in CFG. 

Theorem g. Let P be a simplified P R A M  program without indirect addressing 
on the left hand side of assignments and without conditionals. Algorithm 2 com- 
putes a graph containing all vertices and edges of the communication scheme G* 
of P.  

Proof. The proof is by induction on the steps of the PRAM program: Go is 
computed correctly since it contains a vertex for each memory  cell. There is no 
communication at PRAM step 0. Therefore, E~ is empty. We assume tha t  Gt-1 
is computed correctly. Vertices in the C F G  labeled with t correspond to the 
PRAM assignment executed at t ime t. This labeling is well-defined since the 
C F G  is acyclic by l emma  3. Hence, for each PRAM processor tha t  executes an 
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assignment at t ime t a vertex v is added to G,. If  a memory  cell is read in the 
left hand side of the assignment an edge from the vertex u corresponding to the 
last assignment tha t  wrote this cell to v is added to the set of edges of G,. Hence, 
all oblivious communicat ion to vertices v corresponding assignments executed at 
t ime t have a corresponding edge in G,. If  the left side of an assignment executed 
at t ime t contains an indirect address, edges from all vertices corresponding 
to the last write accesses to each memory  cell is added. Hence, for all non- 
oblivious communicat ions tha t  possibly occur at t ime t there exist an edge in 
Gt. Therefore, G~ is a communicat ion scheme of the PRAM program executing 
the first t steps of P .  Let m be the highest label in CFG. There is no assignment 
executed at t ime t > m. Therefore, the construction of G terminates after m 
steps. Tha t  completes the proof. 

4 Compiling Non-oblivious Programs 

For transforming PRAM programs to LogP programs two tasks must  be per- 
formed: first consideration of the asynchronous execution model and second, the 
distribution of the shared memory.  We construct the communication scheme 
where every node corresponds to an assignment: 

air(i, a)] := ~(a[fl(i, a ) ] , . . . ,  a[fm(i, a)]). 

4.1 Program Transformation 

First, we discuss the index functions in more detail. Therefore, we number  the 
nested indirections in addressing. Observe, tha t  all nestings of indirect addresses 
end up in a direct address, i.e. with a index function independing of the mem-  
ory 's  state. We extend the above assignment by the number  of nested indirect 
addresses: 

a[f~ a)] := q~(a[f~(i, a ) ] , . . . ,  air~ a)]) 

where fJ(i, a) is defined as: 

j �9 j+l  �9 j+ l  . 
kh~ (z, a[f~, 1 (z, a ) ] , . . . ,  a[f~,, (L a)]) 

if index expression ~ contains further indirect addresses. Otherwise it simplifies 
j �9 

to f~ (~). Since for all nested indirect addresses there exist direct addresses, the 
communicat ion structure can be computed partially. For oblivious communica- 
tions of a non-oblivious program sender and receiver can be computed at compile 
time. For non-oblivious communicat ions they have to be computed at run time. 
After having received all data  the expression ~ can be computed. If  the left hand 
side of the assignment doesn' t  contain indirect addressing the result can be sent 
via a channel to the next process as in oblivious programs.  If  it does, the next 
process has to be computed at run t ime and a message has to be sent to this 
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process. We assume that  there is no indi rec t  addressing on the left side of the 
assignments. Hence, an assignment A has the form: 

a[f~ := ~(a[ f~  a ) ] , . . . ,  a[f~ a)]). 

The necessary transformations of an assignment A executed at PRAM-time t is 
shown below. 

A l g o r i t h m  3. Remove Indirect Addresses. 

( 1 )  r e p e a t  

(2)  substitute a[f~(i, a)] with process[f~(i, a)].get_arg(f~ t); 
J i k~(i,a rej+l"" j+l �9 . (3)  substitute f~ ( , a )  with tJk,1 (z,a)] . . . .  ,a[f~, n (z,a)]), 

(4)  unti l  A does not change; 
(5)  r e p e a t  

(6)  substitute a[f~(i)] with ay~(i) ; 

(7)  unti l  A does not change; 

P r o c e s s  a[f~ :-- q~(a[f~ a)], . . ., a [ f~  (i, a)]). 

(1)  p r o c e s s  (f~ t) - simulates m executed by processor f0~ at time t 
(2)  en t ry  start is 
(3)  [all(i) �9 �9 �9 af,~(i)] : : [ r ecv( f l  (i), tl ) . . .  recv(Sm(i), tin)] 

- - c o m m ( f ~  f l  . . . .  ( i ) , t l  . . . .  ) 

A transformed by algorithm 3; 
[send(a/g(0, (,1, r l ) ) ' . ,  send(aloo(i ), (,n, r,~))]; - -comm(,,  v, f~ t) 

end start; 

(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 

e n t r y  get_arg(i, r) is  

send(afoo(O , (i, r)); 
end get_arg; 

e n d  - - p r o c e s s  (f~ t) 

Each of the transformed assignments A is associated to a single process (f0 ~ (i), t). 
Additionally, the initial state of each memory cell must be provided by separate 
processes. For oblivious communications we use a channel-oriented model. We 
assume that  each edge in the communication structure is a channel through 
which communication has to go. The semantics of recv(f~(i),  t~) is that the 
process receives the data sent by process (f~ (i), t~). The receiving of data and the 
assignment to the local variables ayl(i) . . .a],~( 0 is executed in arbitrary order. 
The send(data, (t, 7-)) operation is dual to the receive operation, i.e. process (i, t) 
sends data to process ( t, v). A recv operation is terminated if it received the data. 
Furthermore, we assume that processes can send without any synchronization 
with the receiving processes, and that  the channels are safe. 

L e m m a  6. Let P be a simplified P R A M  program. Af ter  having applied algo- 
rithm 3 to P it doesn't contain any indirect access to the shared memory.  

Proof. The array process will contain the addresses of all processes that  possibly 
contain an argument for computing A. In contrast to array a, array process can 
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be computed statically, since we know all processes at compile time. The length 
of process is at most equal to the length of a. The message get_arg(f~ t) sent 
to a process returns the argument stored in this process to the sender, i.e. to 
process (f~ (line 4). The index functions f can be computed at compile 
t ime since they depend only on i and not on the array a (line 12). 

The or e m  7. Let P be a simplified P R A M  program. The processes ( f~ t) can 
be executed asynchronously and with memory. They compute the same function 
as the original P R A M  program did. 

Proof. Assuming that  constant folding, loop unrolling and recursion elimination 
have been applied complete and correctly to P.  Then P has a finite number of 
statements, because o f l emma 3. Therefore, all indirect addresses on the left hand 
side of assignments and all conditionals can be eliminated. Because of lemma 4 
these transformations are correct also. Therefore, the transformed PRAM pro- 
gram is semantical equivalent to the original one. By lemma 6 all accesses to the 
shared memory can be eliminated. Hence, each process must only contain the 
array cell that  it writes. Therefore, the shared memory can be distributed. The 
correctness of the asynchronous execution is proven by induction on a topologi- 
cal ordering of the vertices in the communication scheme G* of P.  By theorem 5 
G* can be computed statically and contains all possible data dependencies of 
P.  A vertex (i, 0) in G* corresponds to a process providing a[i] at time 0. A 
vertex (i, t), t > 0 in G* corresponds to a process (f0 ~ (i), t). We label each vertex 
that  has been computed as finished. We assume that  processes (i, 0) contain the 
correct initial value of the array cell a[i], i.e. all vertices with depth 0 in G* can 
be labeled initially. A vertex v in G* can be computed if all data needed in v 
is available. By induction hypothesis all predecessors of v are labeled (oblivious 
communication) and have sent the correct values to v (oblivious communication). 
Hence, the processors containing further values needed in v can be computed. 
Also by induction hypothesis all potential predecessors of v are labeled (non- 
oblivious communication). Therefore, v can order these values and computes 
correctly. After computation it sends the correct value to its (oblivious) succes- 
sors and provides this value for further (non-oblivious) requests, v can be labeled 
as finished, as well. 

I, e m m a  8. Let d be the maximal depth of indirect addresses in a program P 
and dg the maximal degree of vertices in G*(P). The over all time Lma= for 
communication from a vertex to its direct successor (in G*) is at most: 

i,nax < ((1 + 2d) • ( i  + 20 + (dg - 2) • max[o, g]). 

Proof. Assume that  a message is the last to be sent from a vertex. Then there 
are out - degree - 1 messages sent before. Hence, out - degree - 1 gaps have to 
be guaranteed. Then, sending the message takes time o and the communication 
delay is L. The same holds for receiving the message where in-degree -1 gaps 
have to be guaranteed. After one necessary oblivious communication for each 
nested indirect addressing two messages have to be sent in sequence. 
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Theorem 9. Let P be a parallel program whose communication scheme G* has 
diameter T. Let C be the maximal computation time for the vertices in G*. Its 
execution time is at most: Trna~ <_ (T - 1) • L ,~= + T • C. 

Proof. On the longest pa th  T tasks have to be computed, T -  1 communicat ions 
occur sequentially. Each computat ion requires at most  t ime C, each communi-  
cation requires at most  t ime L m ~ .  There is no waiting necessary because we 
chose the longest path.  

4.2 Program Optimization 

Merging some of the processes into one processor saves t ime required for com- 
munication. On the other hand, the degree of parallelism is decreased. In fact 
we cluster the computat ions done in the vertices of a communicat ion scheme 
onto the processors of the LogP machine such tha t  the execution t ime is min- 
imal. We can implement  any oblivious PRAM program as an opt imal  LogP 
program w.r.t, its computat ion time. However, the t ransformations themselves 
are exponential. In [PY90] Papadimit r iou and Yannakakis showed tha t  finding 
an opt imal  clustering is NP-hard,  even if o = g = 0 and P = cr We can there- 
fore not expect to find an efficient and opt imal  t ransformation.  I t  is also known 
that  approximative solutions which are bet ter  than 2 • Toptirnat(G) cannot be 
found in polynomial  t ime when o = g = 0, unless P = N P .  However, in [LZ95] 
it is proven tha t  the opt imal  solution can be found in polynomial  t ime if G 
is coarse grained. Furthermore, Gerasoulis and Yang demonstrated in [GY93] 
that  a solution guaranteeing 2 • TIMEopt(G) without vertex duplications can 
be found for coarse grained communicat ion structures assuming that  o = g = 0. 
All these works assumed oblivious algorithms. However, we can extend the re- 
suits to non-oblivious algorithms. Therefore, we define the notion of granularity 
of communication schemes. Informly speaking, the granulari ty of a communica- 
tion scheme G* is the ratio of computat ion and communicat ion costs in G* on 
a distinct parallel machine. 

Definition 10. Let PRED, be the set of all direct predecessors u of a vertex v in 
a communication scheme G*. Let L , ,~ (u ,  v) be the maximal  overall communi- 
cation cost for sending a message from vertex u to vertex v (including overheads 
and gaps). Let C~ be the t ime for computing u. The granularity of a vertex is 
defined as 

min {C=} 
u fi P R E D  g(V) = 

max {Lmax(U,V)}" 
u E P R E D ,  

and the granulari ty of a communicat ion scheme is defined as g(G*) = min {g(v) }. 
v E G *  

G* is coarse grained if g(G*) > 1, otherwise it is called fine grained. 

Note, that  the granulari ty of a communication schemes can be computed at 
compile t ime even if the program is non-oblivious. In contrast to other more 
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qualitative definitions of granularity we can give upper bounds for the execution 
time of a program on a parallel machine in terms of the granularity of the 
corresponding communication schemes. 

Theorem l l .  Any clustering of a communication scheme G* computing only 
vertices of the same path in G* on one processor leads to a program running in 
at most: Tcl~ster <_ (1 + g - ~ )  • Topt,maz(G*). 

Proof. Let :P be the path from a vertex vi with idgv~ -- 0 to a vertex Vo with 
odg~o = 0 with the maximal sum of computation times of its vertices and com- 
munication delay between these vertices. For the optimal clustering of G* it 
holds: Toptirna,(G*) > Z Cv. Let Lmaz(V) -- Lmaz(U, v) where u is the immedi- 

vfi'P 
ate predecessor of v in path :P. Set Lma~(vi) = O. For the naive implementation 
of G* it holds: 

T..,.o(G*) _< C~. + ~ C. + Lm..(v) <_ C.o + ~ C.(, + Lm..(V)C~ ) 
vET ~ v E P  

1 1 ZC " 

1 
<_ (I + g-~)(Cvo + Z Ca) <_ (I + g--(-~) Z Cv 

v 6 ~  v f i P  

< (1 + g - ~ )  x To,,,,a,(G*) 

Because a clustering along the paths in G* cannot increase the running time 
compared to the naive implementation, the proof is complete. 

Note, that for coarse grained communication schemes G* the time bound reduces 
to 2 x Toptimal(G*) even if o # 0, g ~ 0, and the program is non-oblivious. 
Heuristic solutions for clustering communication structures where g # 0 and 
o # 0 can be found in [ZL94]. The techniques for clustering communication 
structures can be applied to communication schemes without any modifications. 

5 Conclusions  

We showed for another subclass of parallel programs for PRAMs that the gap 
between theory and practice can be bridged by mapping this class onto an asyn- 
chronous machine with distributed memory - the LogP machine. This class of 
non-oblivious parallel program is characterized by their communication behav- 
ior which varies for inputs of size n. Prom a practical point of view this class is 
large. It contains for example basic techniques as for instance pointer jumping, 
pebble game and tree contraction. Almost all parallel algorithms on graphs are 
non-oblivious. If the the input size of a program is limited before compiling, 
its communication scheme can be derived statically. With this information, we 
are able to include the transformation from non-oblivious PRAM programs to 
distributed programs running existing parallel machines into compilers. There- 
fore, the clustering and scheduling algorithms for mapping oblivious PRAM 
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programs onto the LogP machine can be applied for non-oblivious PRAM pro- 
grams, as well. Hence, for correct execution of non-oblivious PRAM programs,  
it is not necessary to perform expensive the PRAM-simulat ion.  Additionally, 
we can give upper t ime bounds for execution for the resulting programs on ex- 
isting architectures. Future work will consider the behavior of clustering and 
scheduling heuristics applied to the communicat ion schemes of several graph al- 
gorithms. Beside the upper  t ime bounds it would be interesting to determine 
average running t imes of the resulting programs. Therefore, we want to label 
the non-oblivious communications with the possibility of their occurrence. 
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