
Optimal Data Distributions for LU
Decomposit ion

THOMAS RAUBER GUDULA R(JNGER *

Computer Science Dep., Universit~t des Saarlandes, 66041 Saarbriicken, Germany

A b s t r a c t . The paper considers the well-known problem of LU decom-
position to study a method to derive data distributions for parallel com-
puters with a distributed memory organization. The importance of the
paper lies not so much in the special application but with the principle
that the problem of finding an optimal data distribution is formulated
as an optimization problem. This is possible by using a parameterized
data distribution ~Lnd a rigorous performance prediction technique that
allows us to derive runtime formulas containing the parameters of the
data distribution. The parameters are determined in such a way that
the total runtime is minimized, thus also minimizing the communication
overhead and the load imbalance penalty.

1 I n t r o d u c t i o n

An impor tan t issue in the design of parallel programs for distributed memory
machines (DMMs) is the choice of a suitable data distribution. The layout of
the data structures of a parallel program among the processors of a parallel
machine strongly influences the performance of the program. An inappropriate
da ta distribution may lead to a large communication overhead and a load im-
balance which may reduce the speedup considerably. The goal is to find a da ta
distribution that minimizes the overall execution t ime of a parallel program, thus
minimizing the communicat ion overhead and showing a good load balance.

In this paper, we describe a technique to derive a suitable data distribution
for any algori thm tha t uses arrays of arbi trary dimension as data structures.
The technique is based on the use of a parallel programming model [RRW95]
in which formulas for the global execution t ime of an algorithm can be derived.
These formulas depend on the problem size and on the machine parameters tha t
are used by the p rogramming model. The numerical evidence of the formulas
derived in this p rogramming model has already been shown for many numerical
applications like Newton iteration, extrapolat ion methods, and different Runge-
Ku t t a methods, see [RRW95] and the references therein.

This paper extends the performance prediction technique of the programming
model by introducing parametr ized data distributions. The use of these da ta
distributions leads to runt ime formulae that not only depend on the problem size
and the machine parameters but also on the parameters of the data distribution.

* both authors are supported by DFG

392

This enables us to apply optimization techniques to determine the parameters
of the data distribution such that the global execution time is minimized.

We apply this technique to derive a data distribution for the Gaussian LU
decomposition of a matrix. The LU decomposition is chosen as example for two
reasons. First, the problem has been extensively studied in the past, see [vdV94]
and the references therein. Thus an optimal data distribution for this problem
has already been derived by other approaches [FWM94, vdV90] and has been
verified by experiments on various parallel machines. This gives us the possibility
to verify the results of our analysis. Second, finding an optimal data distribution
for LU decomposition is not trivial because both the communication overhead
and the load balancing issue have to be taken into consideration. Finally, di-
rect solvers for linear systems are important because they don't impose special
requirements on the problem as many iterative solvers do.

The rest of the paper is organized as follows: Section 2 gives an overview of the
programming model used. Section 3 introduces a special class of parametrized
data distributions which is used in Section 4 for the derivation of formulas for
the global execution time of a parallel implementation of the LU decomposition.
Section 5 shows how these formulas can be used to determine the parameters of
the data distribution such that a minimal global execution time results.

2 P a r a l l e l c o m p u t a t i o n m o d e l

The important information for the evaluation of a parallel program is the global
execution time. The global execution time is the time between the start and the
termination of a computation of a program and, in case of a parallel program,
it consists of the time for computations and the time for communications.

For the theoretical prediction of the execution times, we use the parallel
computation model from [RRW95]. The model describes a parallel machine by
four parameters: (1) the number p of processors, (2) the time top to execute an
arithmetic operation, (3) the byte transfer time tc for point-to-point messages,
and (4) the startup time r for point-to-point messages. For a specific machine,
the values for top, to, and r are determined by appropriate benchmark programs.

Parallel programs are specified in an SPMD (single program multiple data)
programming scheme. The data exchange between processors is performed in a
synchronous communication phase that is expressed by communication primi-
tives like single-to-single transfer, single accumulation, and single broadcast.

The runtime t(Prog) of a program Prog executed by a set G processors is

t(Prog)=r~a~tw(q)W~tc(q)

where tw (q) is the computation time for processor q and to(q) is the communica-
tion time for processor q. The computation times t~ (q) are determined from the
arithmetic operations of the program. The communication time depends on the
communication primitives used. The costs of one of the communication primi-
tives for a specific parallel machine are expressed by a formula that depends on

393

the number of communicated data, the number of part icipating processors, and
the machine parameters ~" and to. The transfer t ime of a message of M bytes
between two processors P1 and P2 is t ,_ , (M) = r (M) + M . tc(M), independent
of the special interconnection network of the DMM. The runt ime formulae for
the other communicat ion primitives depend on the special machine. For a hy-
percube network, [JH89] addresses the exact runtimes of the primitives. We use
the formulae f rom [RRW95] for our implementat ions on an Intel iPSC/860:

t,_broad(P, M) = (1 + logp)(Mtr + v) (1)

P-',osv) t,_aather(p,M) = ,_--:-TL-Mte + + logp r

3 D a t a D i s t r i b u t i o n s

In order to determine an opt imal data distribution that has the minimal global
execution t ime for the LU-decomposit ion, we consider a theoretical execution
t ime function that contains the information about different data distributions as
parameters . For the distribution of an array A, we adopt the parametr ized da ta
distribution of [DHR94]: Let A be an array with d dimensions of size no • . . . x
r id_ 1. The elements of A are addressed by elements f rom an index set 1.4 C_ 1~ d.
We assume tha t the indices of dimension i range between 0 and ni - 1. Let
P = {q0 , . . . , qp-1} be the processors of the target machine.

D e f i n i t i o n 1. (distribution function) A function 7A : IVa ___, p is called a dis-
tribution function for A. A distribution function "YA parti t ions the elements of
1.4 i n t o p index sets Io , . . . , Ip-1 C_ Ia with Iq = {k e IAITA(k) = q}.

We consider distribution functions tha t are described by distribution vectors
of the form ((m0, b0) , . . . , (md-l,bd-1)) with p = 1-Id__-01 mi and 1 < bi _< ni.
The value mi, 0 < i < d - 1, is the number of processors in dimension i.
Dimension i is divided up evenly among the mi processor groups. For simplicity
we assume ni/mi E IV. The value bi specifies the block size in dimension i. The
two-dimensional case is illustrated in Figure 1.

D e f i n i t i o n 2 . (Parametr ized distribution function) We logically arrange the
processors in a d-dimensional grid, i.e. processor q is specified by a grid ad-
dress G(q) = (jo, . . . , jd-1) with 0 < ji < mi for 0 _< i < d. The distribution
function for a distribution vector ((m0, b0) , . . . , (md-1, bd-1)) is

Vo j
Remark: I f bi = 1 for i = 0, . . . , d - 1, the function (2) describes a cyclic distrib-
ution. If rni �9 bi = nl, the function (2) describes a block distribution.

Here, we consider the case d = 2 and no = nl, i.e. A is a quadratic matr ix ,
see Figure 1. Eaeh processor owns contiguous blocks of array elements of size
bobl. A superbiock is built by m0ml of these blocks. The number of superblocks
in dimension i = O, 1 is [n/(mibi)]. For simplicity we assume n/(mibi) e IV.

394

n/(m h superblocks

\
k

\

\
\

nl(mobo)
superblocks

ml b locks" ,

(0,0)

(1,0)

(2,0)

', (3,0)

(0,1)

(1,1) mo blocks

(2,1)

"',(3.1) " ' ' -

x x

\ \ b I elemen'~ x

\ I I I I I I 1
\ I I I I I I e~~ \

\ 1 1 1 1 1 1 1

Fig. 1. Distribution of an array with d = 2 dimensions among p = 8 processors. The figure
shows the case m o = 4, ml = 2, b0 = 3, and bl = 6.

D e f i n i t i o n 3 . (row groups, column groups) For d = 2 and a twodimensional
g r id -number ing of the processors, the set of processors is divided into a par t i t ion
of m0 row groups Ro, . . . ,Rmo-1 and into a par t i t ion of ml column groups
Co, . . . , Cm~-l, i.e.

me - 1 r n 1 - 1

U R i = U G = P and R i N R j = $ and C i f 3 C j = 0 for i # j
i = 0 i = 0

The row and column groups are:

Ri = {q e PIG(q) = (i,-)} (7 / = {q �9 P IG(q) = (., i)} (3)

For 0 _< i < mo and 0 < j < ml , it is [R~[= rn~ and [Cj[= too.

L e m m a 4 . For distribution function (2), each row i of A is stored in a single
row group Rk with k = i (mod mobo) or [i/boJ = tk/boJ. Similarly, each
column j of A is stored in a single column group Ck with k -- j (rood mlbl)
or [J / h J = [k / b d .

For a hypercube network, we have p = 2 z and therefore mo = 2 x~ and
ml = 2 ~1 with x = x0 + z l . We m a p the two-dimens ional processor grid into

395

a hypercube with reflected Gray Codes (RGC) [BT88]. The z -b i t RGC is a
sequence of 2 x distinct binary numbers with x bits each.

D e f i n i t i o n 5. (RGC sequence) The 1-bit RGC sequence is {0, 1}. Let {b0, b l , . . . ,
bq-1} be the (z - 1)-bit RGC sequence with q = 2 =-1. The corresonding x-bi t
RGC sequence is {0b0, Obl,...Obq-1, lbq-1,.., lbo}.

We generalize the recursive construction of the RGC sequence: Suppose that
{a0, a l , . . . a m o - 1 } and {b0, b l , . . . bml -1} are the xo-bit and x l -b i t RGC se-
quences. We construct the mo • ml matr ix of x-bi t strings {aib i li = 0 , . . . , m0 -
1 ; j = 0 , . . . , m l - 1}

I aobo aobl ' ' ' aobml-I]
albo. albl. albml-1. [(4)

I [amo-lb0 amo-lbl amo-lbm~-lJ

that represents the mapping of a mo x rnl mesh into a hypercube. The processor
p with G(p) = (i, j) is the x-cube node with identity number aibj. The rows and
columns of matr ix (4) represent the row and column groups (3).

L e m m a 6. For a hypercube network, the row (column) groups (3) are hypercubes
with ml (mo) processors.

The fact that row and column groups represent independent substructures makes
it possible to assume independent executions on the row and column groups. This
is true for every topology in which a grid can be embedded.

4 P a r a l l e l I m p l e m e n t a t i o n o f L U D e c o m p o s i t i o n

In this section, we describe a general parallel implementation of the LU decom-
position that is based on parametrized data distributions as described in the
last section and derive formulas for the global execution time that depend on
the parameters of the data distribution and the machine model.

4.1 L U D e c o m p o s i t i o n o f a m a t r i x

We consider the LU decomposition of a matr ix A without pivoting in order to
keep the example comprehensible. The following short description of the LU de-
composition introduces the notation that we use for the parallel implementation.
The matr ix A is factorized into A = LU with a unit diagonal, lower triangular
matr ix L and an upper triangular matr ix U. To compute the n ~ unknown entries
of L and U, we proceed row by row (Gaul) . The entries of L and U are stored in
a single matr ix A n-1. We compute A r ' -I by executing (n - 1) elimination steps.
Elimination step m consists of subtracting suitable multiples of the mth equa-
tion from the remaining equations m + 1 , . . . , n. The multiples are determined in

396

such a way that the unknown Zm is eliminated from these equations. In general,
after the (m - 1)th elimination step we are left with matr ix

A (m-l) =

a l l a12 " � 9 a l t o "" a l n

121 a ~) n(1) .~(1) . . . a~) ~2,rn--1 ~2rn
�9 . . �9 . �9

�9 ,

�9 �9 (,n -2) (,~ -2) (,,~-2)
". a r n _ l , m _ l arn- l , rn � 9 a r n _ l , n

: lm,m-1 a(mmm -I) "'" a(mrr~ -I)
�9 �9 o �9 �9

(rn-1) (m--l)
l n l l n , m - 1 a n m " ' " a n n

In step m, xm is eliminated from equations i = m + 1 , . . . , n by subtrac-
(,~-1), (,~-1)

tion of aim ~atom times equation m from each of these equations. This
yields the matr ix in which the first m rows and m - 1 columns are the same
as those of A(m-l). The remaining elements in column m of A(m) are replaced

(m- - l) . (m - l)
by llm = ai,~ /a~,~ and the other elements are given by a ~) ~(,~-1) = t~ij

a } : - l) a ~ " j - ') / a ~ - - for i , j = m + 1, m + 2 , . . . , n .

4 . 2 P a r a l l e l I m p l e m e n t a t i o n

For notational convenience, we use Ro(k) and Co(k) to denote the row group
that holds the row with number k and the column group that holds the column
with number k. Using distribution function (2), Ro(k) and Co(k) are defined by:

R o (k) = R / for k = i (modm0b0)

C o (k) = C i for k = i (modm0b0)

We consider the forward elimination step m --~ m + 1 without pivoting�9 For
the array element with index (m, m) there is exactly one processor r E P with
(m, m) E It . The following operations are necessary for the elimination step:

1. Broadcast of the pivot row: In order to eliminate the ruth column element

a~n) for i > m, a suitable multiple of the pivot row (a(m~-t) , . . . ,a('~ -D) has
to be subtracted from the remaining rows m + 1, . . . , n. Therefore, the pivot
row has to be sent to the relevant processors�9 The pivot row is distributed
among the processors q E Ro(m). The element a(~. -1) of column j has to
be sent only to those processors owing some elements of the same column
j , i.e. to all q E Co(j). Thus each processor q E Ro(ra) performs a single
broadcast operation to all processors in its column group (group broadcast).
The number of elements to be transmit ted is #{(re , j) E Iqlj > m}.

2. Computat ion of elimination factors: The processors in the column group of
r compute the values lira, i.e. each q E Co(m) computes lira if (i, m) E Iq.
Processor q E Co(m) computes #{(i , m) E Iqli > m} elements.

397

3. Broadcast of elimination factors: Processor q E Co(m) broadcasts all com-
puted values lira to all processors owing some elements of row i, i.e. to all
s E Ro(i). The number of elements transmitted is #{(i, m) e Iq li > m}.

4. Computation of new matrix elements: Each processor q computes a!. m) =
s3

(m - - l) , (r a - - 1) . n
a,. - qra a_ : mr an elements (i, j) E Iq . That are [{(i,m) E Iq ; i > �9 .~ r16j
rn11. |{(re, j) E / q ; j > m}[elements.

The LU decomposition executes n - 1 of these steps. There are synchroniza-
tion points between the broadcast of the pivot row and the computation of the
elimination factors iirn and between the broadcast of these factors and the com-
putation of the new matrix elements. But there is no need for a synchronization
between the computation and the transmission of the values li,~. In the two
computation phases (2. and 4.) all processors involved in the computation are
executing in parallel.

4.3 R u n t i m e P r e d i c t i o n

We assume that the processors are arranged in a topology in which the dis-
joint row or column groups represent independent substructures. Examples are
a hypercube network in which the substructures are also hypercubes and d-
dimensional grid structures in which the substructures are (d - 1)-dimensional
grids. For these topologies , the broadcast operations of the row or column groups
can be performed in parallel. Therefore, the maximal communication time needed
by the dominating group determines the global communication time. The fol-
lowing lemma summarizes the resulting global execution time of the complete
method according to the performance model from Section 2. The global execu-
tion time specified represents an upper bound to the exact runtime.

LemmaT. The global execution time of the L U-decomposition estimated ac-
cording to the computational model of Section 2 is:

rt--1

T1 = E { max t ,_~road(#Co(q),#{(m,j) e lqlj > m})
r a = l qERo(m)

+ max #{(i ,m) E Iqli > m}. top
q~Co(m)

+ max t ,_b ,oad(#Ro(m),#{(i ,m) E Iq[i > m})
q~Co(m)

+max(#{(/ , m) E/qli > m}. #{(re, j) E Iqlj > m}) * 2top}
q

For the parametrized distribution function (2) the number of elements to be com-
puted or broadcasted are estimated by upper bounds containing the parameters
m0, b0, ml, bl. For the broadcast of the pivot row m, the number of elements to
be transmitted by each processor q E Ro(m) is

I n - - r e + l] (n - m + l ~ n - m + l
#{(m, j) E Iqlj > m} < | ~ | bl < \ m]ba + 1] b I - - - - m l -t- bl

398

where [n -~+l] is the number of superblocks and bl is the number of elements / ,~,b,~ /
of row m in each superblock. The number of elements l~m to be computed or
broadcasted by each processor q E Co(m) is

#{(i 'm) EIql i>m}<- [~o~]n-m bo<_ (~o~n-m+l) mo

The parametrized data distribution and the corresponding estimations of the
size of the index subsets result in the global execution time that is expressed
in the following lemma. Note that the estimation of the number of elements
broadcasted or computed is independent of the individual processor. Therefore
there is no need to use the maximum function.

L e m m a 8 . The parameterized global execution time of the L U-decomposition
implemented with the parametrized data distribution ((mo, bo), (ml, bx)) is

n--1

T2(m0,b0, m~,b~) = ~ (t,_b~oo~(m0, n - m + 1 + bl)
rn= l m l

+(n - m + bo)top + t~_b~ood(ml, n -- m + bo)
D~O m o

+(. - m + b 0) (~ - m + h)2top)
m 0 rr t l

where moral = p and 1 < bi < n/mi for i = 0, 1.

For a hypercube network, we substitute the time ts_b~ood for a single broad-
cast operation by equation (1) and transform the addition over m according to

n-1 n (n - 1)/2 n-1 and ~m=l rn2 n (n - 1)(2n- 1)/6. We get for example:

rt--I

t,_brood(mO, n-- m + 1 + bl)
m = l m l

r t -1

= Z (l + l o g m o) ((n - - - m + l + b l) t e + r)
r n = l m l

(l_ t_logmo)((n(n21) 1 + n - 1)) = - - + (n - 1) b l t , + (n - 1) r
rnl ml

L e m m a 9. The global execution time of the L U-decomposition implemented with
the parametrized data distribution ((mo, b0), (m~, bl)) on a hypercube network is

T3(mo,bo, m x , b l) : (a + log m 0) ((n (2 - 1) lml- +n-i+ml (n-1)bl) te-4-(n-i)v)

+ (l + l ~ 1) lmo + (n - l) b o) t c + (n - 1) r)

+ 6 p 2 \m0 m] / /

399

where room1 = p and 1 < bi < n lm i for i = 0,1.

Special cases of the parametrized distributions are the
�9 row-cyclic distribution with ((m0, bo), (ml, bl)) = ((p, 1), (1, 1))
�9 column-cyclic distribution with ((m0, b0), (ml, bl)) = ((1, 1), (p, 1))

The decision which of these distributions is better depends on the number of
processors p and the system size n. We consider the difference

(o
T3((p, 1), (1, 1)) - 7"3((1, 1), (p, 1)) = (n- l) (l+log(p))tc + ~ptOp-ptC--~top

L e m m a l 0 . The row-cyclic distribution is better than the column-cyclic distri-
bution (i.e. T3((p, 1), (1, 1)) - T3((1, 1), (p, 1)) > 0) /f

tr 2(/9(1 + log(p)) - 1)
n <

top p - 1

In some situations, the row- and column-cyclic distributions are suitable for
the use of LU decomposition as a module within more complicated problems.
An example for this situation can be found in [RR95] which describes the im-
plementation of a diagonM-implicitly iterated Runge-Kut ta (DIIRK) method.
The DIIRK method executes several Newton iterations where each iteration of
the Newton method uses an LU decomposition.

5 O p t i m a l D a t a D i s t r i b u t i o n f o r L U D e c o m p o s i t i o n

In this section, we derive an optimal parametrized data distribution for the LU
decomposition, i.e. the data distribution that minimizes the global execution
time.

De f in i t i on 11. The optimal data distribution for a parallel program Prog is the
data distribution ((~0,b0), . . . , (rhd-l,bd-1)) that minimizes the parametrized
global execution time Tprog ((mo , bo) , . . . , (rod-l, b d-1)) of Frog, i.e.

Tproa((~no,bo) , . . . , (~nd_l ,bd_l))= min Tp ,og((mo ,bo) , . . . , (md- l , bd -1))
(,~, ,bO

i----0,...,d- 1

d-1
where 1-Ii=o mi = p and 1 _< bi <_ n i /mi .

The following lemma states that the block size of an optimal data distrib-
ution is 1 in each dimension, if the runtime formula for the execution time of
a broadcast operation can be separated into a part that only depends on the
number of processors and into a part that only depends on the number of data
items transmitted.

L e m m a 12. (Block size of optimal data distribution for L U decomposition) Con-
sider a network in which the time for a single broadcast operation can be repre-
sented as t,_b~oad(P, M) = f (p) g (M) with g monotonically increasing for M > O.
The optimal data distribution minimizing T2((mo, bo), (ml , bl)) of Lemma 8 ful-
fills bo = bl = 1.

400

Proof. We consider Tz as a function of bo and bl. The broadcast terms of T~
are monotonically increasing in b0 or bl. The computation term is a positiv
quadratic function in b0 and bl, i.e. 7"2 contains positive terms in b0, bl, and
bobl. Therefore, T2 has its minimum at the left hand boundary of the intervall
1 < bi < n/mi, i = 0, 1, which is independent of m0 and ml.

Note that the separation of the variables required by the lemma is possible
for most networks like trees, meshes, and hypercubes. For a hypercube network,
it is for example according to equation (1): f(p) = 1 +logp and g(M) = 7"+ Mtr
Because of Lemma 12 we now have to minimize T2((mo, 1), (ml, 1)).

For this minimization, we have to know the dependence of the runtime of the
broadcast operation on the number of participating processors i.e. we need a con-
crete runtime formula. From now on we consider the hypercube network as a spe-
cific network and minimize Tz((m0, 1), (rnl, 1)) which we denote by T3(mo, ml).
The function 7"3 consists of three components: a constant part Tc that is inde-
pendent of m0 and ml, a symmetric part Ts that is a symmetric function in m0
and ml, and an asymmetric part TA.

Tz(m0, ml) = Tc(mo, ml) + Ts(mo, ml) + Ta(mo, ml)
To(too, ml) = 2(n - 1)(re + r) + 3(n - 1)top +

(n - 1)(te + r)(logm0 + logml) + n(n - 1)(2n - 1) 12top (5)
6 p

Ts(m0, m a) = n (2 - 1) (t e + 2 t o p) (l + l ~ + n (n - l) t e (l o g m o _t_ log ml ~(6)
\rno ml] 2 \ ml mo /

(1 m~) n (n - l) 1 top (7) T A (m 0 , m l) = (n - - 1) t c ~ + logm0 + ~ m 0

The constant component Tc is independent of m0 and ml (because of log m0 +
log ml = log(m0ml) = logp) and does not influence the optimal choice for m0
and ml. The symmetric part Ts contains the row broadcast and part of the
column broadcast of the pivot row. The asymmetric part TA contains the com-
munication overhead of broadcasting the pivot element within the column groups
and a term that reflects the load imbalance of computing the elimination factors
lira only in one column group. For Ts the minimum can be computed analytically,
if the arguments are assumed to be real values.

L e m m a 13. (Optimal data distribution for the symmetric part) If Ts is consid-
ered as a function of real values, then Ts(mo, ml) is minimal formo = ml = vrp.

Proof. The analytical solution is obtained by differentiating Ts(rno, p/mo):

d Ta(mo,p/mo)= n(n-1)(te§ (1 1)
drno 2 m~

-t- n (~ t e ((l~176 m021 l ~

d T !logm0 - ~ (l o g p - - It is ~ (V~, v/-P) = 0 because of 1 -p/m2o = 0 and p

log m0) = 0 for m0 = x/~.

401

For an integer solution we have to find integer values m0 and ml near vf~
that fulfill moml = p.

The data distribution characterized by m0 = ml = v/-ff is the optimal solution
for the symmetric part Ts and also for Ts +To. The asymmetric part TA has not
been taken into account for the derivation of the solution. This is only justified
if the influence of TA is small. Figure 2 shows for two fixed number of processors
that the influence of TA on the optimal selection of m0 and ml is small. The
following lemma shows that TA is small compared to the global execution time
Ts + Tc + TA for an arbitrary number of processors.

execution time depending on m0 or ml
4129000.0

4128000.0

4127000.0

4126000.0

4125000.0

4124000.0

4123000.0

execution time depending on m0 or ml
i ' ! I i

k T3 (m0,p/m0) --
~ T(p/ml, ml) ----

�9 % . �9

I I I I

5 5.2 5.4 5.6 5.8
x

2268400.0

2268200.0

2268000.0

2267800.0

2267600.0

2267400.0

2267200.0

2267000.0
28

! i ' ! i i i

\ T3(m0,p/m0)
. ~ T{p/ml,ml) ----

\',,,,~ //

r - I I I I I

29 30 31 32 33 34 35
X

Fig. 2. Global execution time 7~3 (too, ml) in #s with variable mo and setting ma = p/mo,
and variable rno and setting rnl = p/mo for p = 32 and p = 1024 processors. The
intersection point of the curves lying at x/P is the optimal solution of the symmetric part.

L e m m a l 4 . Let Tc, Ts, and TA be the constant, the symmetric, and the asym-
metric parts of the global execution time Tc + Ts + TA according to (5), (6), and
(7). The fraction of the asymmetric part TA on the global execution time is

TA 1 1
Tc + Ts+ TA <- --2+ F

with X = X(n, p) and Y = Y(n, p):

n 3n n top (2 + logp)(tc+q-) + 3top
X = ~ + 2p(l+logp) + log-----p t-~ + (1 + logp)tc +

tc 3-~ 2 tc + I"
Y = l l + 2 n + (n + l) ~ o p + (2n + 1) + n(1 + l ~ top

2n(2n~l)top
6p(1 + logp)tr

Proof. The claim follows by substituting Tc, Ts, and TA and estimating m0 and
rnl appropriately.

Note that X and Y do not depend on the special choice of m0 and ml but
only on n and p. Figure 3 shows that the value of 1 / X + 1 / Y is smaller than
0.3% for all values o f n and p.

402

fraction of TA on global execution time

TA/TA+TS+TC

T 0.003~\
0.0025 <
0.002

0.0015 0.001 0.0005 0 I
i00 5~0 128 512p

I000

1024

Fig. 3. Value of
l / X (n , p) + l / Y (n , p) for dif-
ferent system sizes and num-
ber of processors.

6 Conc lus ions

This article shows that the problem of finding a good data distribution for nu-
merical algorithms can be reduced to an optimization problem, if parametrized
data distribution functions are used and if the algorithms are formulated within
an appropriate computation model. This is illustrated by considering the LU
decomposition of a matr ix as a representative example. The technique can Mso
be applied to other numerical algorithms that work with arrays of arbitrary di-
mension. We think that the technique could be a starting point to solve the data
distribution problem in parallelizing compilers [DHR94].

References

[BT88]

[DHR94]

[FWM94]

[JH89]

[RR95]

[RRW95]

[vdV90]

[vdV94]

D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computing.
Prentice Ha/l, New York, NY, 1988.
A. Dierstein, R. Hayer, and T. Rauber. A Branch-and-Bound Algorithm for
Array Distributions. In 2nd Euromicro Workshop on Parallel and Distributed
Processing, pages 528-535, 1994.
G.C. Fox, R.D. Williams, and P.C. Messias. Parallel Computing Works!

Morgan Kaufmann Publishers, 1994.
S.L. Johnsson and C.T. Ho. Optimum Broadcasting and Personalized Com-
munication in Hypercubes. 1EEE Transactions on Computers, 38(9):1249-
1268, 1989.
T. Rauber and G. Rfinger. Performance Predictions for Parallel Diagonal-
Implicitly Iterated Runge-Kutta Methods. In 9th Workshop on Parallel and
Distributed Simulation, Lake Placid, USA, 1995.
T. Rauber, G. Rfinger, and R. Wilhelm. An Application Specific Parallel
Programming Paradigm. In International Conference on High-Performance
Computing and Networking, 1995.
E.F. van de Velde. Data redistribution and concurrency. Parallel Comput-
ing, 16:125-138, 1990.
E.F. van de Velde. Concurrent Scientific Computing. Springer, 1994.

