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Abstract  
Defining an optimal schedule for arbitrary algorithms on anetwork of heterogeneous 
machinesis an NP complete problem. This paper focuses on data parallel deterministic 
neighborhood computer vision algorithms. This focus enables the polynomial time 
definition of a schedule which minimizes the distributed execution time by overlap- 
ping computation and communication cycles on the network. The scheduling model 
allows for any speed machine to participate in the concurrent computation but makes 
the assumptiono famaster/slave control mechanismusing a linear communicationnet- 
work. Several vision algorithms arepresented and describedin terms of the scheduling 
modelpar ameters. Thetheoretical speedup of these algorithms is discussed and empir- 
ical data is presented and compared to theoretical results. 
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1 Introduction 
In the past many studies have been performed analyzing the capabilities of various 

parallel processor - vision algorithm mappings. Thorough surveys can be found in 
[18][3][2][,1][5][17]. Most of these efforts focus on the mapping of a single machine to 
a single algorithm or mapping a suite of algorithms to a single architecture. [18] Most 
of the conclusions made in these studies are based on the architectural similarities be- 
tween the hardware communication configurations and the communication patterns in- 
herent in the vision algorithm (i.e. vision tasks tend to have highly regular communica- 
tion). Recent research efforts have discussed the mapping of computer vision tasks to 
networks of workstations with the assumption of homogeneous workstation clusters. 
[11][7] Additional efforts have focused on scheduling suites of independent programs 
onto networks of heterogeneous machines. [10] This paper relaxes the assumption of 
homogeneous workstation clusters and independent program suites. It focuses on the 
distribution of a single program on a set of architectures connected by the PVM mes- 
sage passing library. [6][13] A framework is presented for the polynomial time sched- 
uling of deterministic local communication algorithms onto a suite of heterogeneous 
machines using linear communication. 

The paper is organized as follows. Section 2 presents the background and motiva- 
tion. Section 3 develops the analytical description of the scheduling process and 
introduces a set of conditions necessary for the minimization of the execution time. 
Section 4 presents the scheduling algorithm. Section 5 presents several low level com- 
puter vision tasks and their corresponding scheduling models. Section 6 demonstrates 
the use of the scheduling method on the computer vision examples, presents theoretical 
speedups and discusses the elements of nondeterminism inherent in actual run times. 
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Section 7 presents several conclusions based on the experimental data, and finally an 
appendix contains derivations of several conditions presented in the paper. 

2 B a c k g r o u n d  
Efforts have been made to develop an Automatic Visual Inspection System (AVIS) 

for use with various critical aerospace components. These components include high 
pressure turbine blades (aircraft), injector baffles, oxidation posts, annulus rings(space- 
craft). AVIS utilizes several scales of information abstracted from the original image, 
with each scale requiring a set of low level vision operations. [8][14] The realization 
of the AVIS paradigm is limited by the tremendous computational burden of these low 
level vision operations. These algorithms include convolution, difference of Gaussian 
filtering, morphological filtering, Fourier transform, and Hough transform. In order to 
increase the speed of AVIS, distributed solutions were investigated. Defining an effec- 
tive distribution onto the various machines available on the LAN requires models of 
algorithm decomposition, communication mechanisms, and machine speed for a given 
algorithm. 

Heterogeneous computing is the well orchestrated and coordinated effective use of 
a suite of diverse high-performance machines to provide superspeed processing. [10] 
These applications typically contain several types of distinct control and data parallel- 
ism. For the purposes of this work data parallelism is of primary interest. Of the avail- 
able models of parallelism the master/slave paradigm is efficient for most low level 
computer vision algorithms. The master-slave model utilizes a single controlling ma- 
chine which issues commands and data to slave machines. In data-parallelism these 
commands are identical typically operating on different sets of data (the Single Pro- 
gram Multiple Data model-SPMD) or occasionally on identical data sets in the case of 
distributed search methods. Whereas in control-parallelism the slave machines per- 
form dissimilar tasks on typically dissimilar data sets. Most low level vision tasks ex- 
hibit data parallelism with deterministic and localized communication patterns. This 
characteristic enables the elimination of interslave communication by sending each 
slave machine the necessary data according to the algorithm neighborhood. As the ma- 
jor computational burden of AVIS corresponds to low level vision algorithms, these are 
pursued in depth in the upcoming sections. 

3 Analytical Development 
Before an algorithm can be scheduled a decomposition scheme must be defined for 

the data. Two popular methods for decomposing image data are row partitioning (or 
strip mining) and block partitioning. In row partitioning each slave processor receives 
a number of rows from the original image and the associated neighborhood pixels 
needed in order to manipulate this row of data. Likewise, in block partitioning each 
machine receives a given block of data and its associated neighborhood. Typically 
these blocks must be partitioned onto a square number of homogenous machines, al- 
though alternative heuristic schemes have been described for blocking nonsquare num- 
bers of homogeneous machines. [11] Examples of these partitioning schemes can be 
s e e n  in Fig. 1 & Fig.2. Although the total boundary pixels are typically less for block 

partitioned data than for row partitioned data, ( 2 f - n - 2 ) v s ( n - 1 ) ,  
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Fig.2 Row Partitioning - 9 machines 

block partitioning introduces many problems in the scheduling of heterogeneous ma- 
chines. Assuming that an efficient heuristic could be defined that would partition the 
data onto heterogeneous machines, its inherent nonlinearity would make the analysis 
and minimization computationaUy expensive (at least combinatorial in regards to the 
number of nonlinearities). Hence, row partitioning will be assumed for the upcoming 
formulations. In order to discuss the analytic model and the conditions necessary for 
optimal scheduling, terminology involved with the theoretic execution and commu- 
nication times must be presented. Definitions and terms are presented in Fig.3. 

Definitions: 
~f(n) - a scheduling of N homogeneous tasks onto n machines, where 

i ron  

N = ~ ~h , with each slave machine(i) receiving a task size of ~h �9 
i = l  

Yi - seconds/operation for each processor(i), where 
the operation is algorithm dependent. 

TY,~I) - time(secs) spent receiving data from y tasks from processor i .  

T~ - overhead(secs) required for any receive operation. 

T~i) - time(secs) spent receiving data from Yh tasks from processor i .  
T~i) = T~ + T~it(i) 

dp, - #bytes needed to receive task size 1 from a slave machine. 

TY,~) - time(secs) spent sending data associated with y tasks to processor i .  

T~ - overhead(secs) required for any send operation. 

Tai~ - time(secs) spent sending data for ~li tasks to processor i .  

T,~i) = T~ + Tn~) 
dp, - #bytes needed to send task size 1 to a slave machine. 

TY,~) - time(secs) required by processor i to compute a task size of y .  

T,~i) - time(secs) spent by processor i computing task size ~h , Tai) = T~ii). 

dp~ - #operations required to compute a task of size I .  

T ( n )  - total time to execute 3'(n). 

T t - b  b r "m- T~i) - T~ i ) .  

UfJ = max (o,f) .  

Fig.3 Definitions and terminology used in the scheduling model 
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For the following discussions, a linear single line communication model is assumed. 
Hence the communication time can be modeled as T~m,~a~o. = ct + #bytes • 13, 
where ct is the startup overhead for a particular communication process and 13 is the 
seconds per byte transmission rate of  data to and from a slave processor. This results in 
a constant aggregate communication time for a given number of  processors: 

n n 

T,(1) -- T,, ~ T~i ) -- T, .  Similarly, the addition of  any new slave machines into 
i = l  i = l  

the data parallel non interslave communication paradigm results in an additional over- 
n + l  n n + l  n 

0 head value: ~ T~(i) = E T~(i) + T~.+ ~) and similarly: ~ T,(i) = Z T~(1) + T~(,~+ ~). 
i = l  i = l  i = 1  i = l  

Some additional assumptions included in the AVIS model are that the slave machines 
can be organized such that machine(i) is faster than machine(i+l), i.e. ~'i < "r for 
the particular type of task set to be scheduled. Also assumed is that the time for com- 
munication is not greater than the time for computation, i.e. T~( 0 > T,(1) + T,(1) V i .  
These assumptions are necessary for several of  the analytic derivations. 

As seen in Fig.4 the linear communication model allows for a quick graphical 
analysis of  the optimality of  a given schedule. The degree of  nonconcurrency in the 
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Fig.4 Depiction of Master-Slave Communication and Execution Model 

schedule is indicated by the values of g, o), and X. The parameter g is a measure of  the 
time spent by the master machine waiting for the first processed data partition to be 

returned, O -- T~(I~ - Z T, ,~.  The parameter (oi is a measure of  slave machine wait 
i = 2  

time caused by contention with the previous slave machine for the linear communica- 

tion channel, (oi -- [ T,(i_l~ + T~(i_l) - (T,(~) + T~(i) ) J . The parameter Zi is a mea- 

sure of  the master wait time caused by excess computation of  machine(i) after ma- 
chine(i- l )  has completed returning its data partition. Although it would appear that 

~i = [ T,(i) + T,(i~ - T~(i_l) - T~(i_~)] , ~i can be reduced by previous toj values, i.e. 

X~ ; [T<i) - T,G~ - ~"  Ted~ - 0 ]. As one would expect, large values of g, m and 
j = i + l  j = l  

result in suboptimal schedules. Typically these values cannot be eliminated due to 
the constraint of  integer task size. The total execution time for a given schedule is: 
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n n n 

T(n) - - -  ~-~T,(1) + ~-~T, cl) + [oJ + ~..Xi" In order to minimize this execution time, 
i = l  i = l  i = 2  

a set of criteria must be established to explicitly define the effects of the values Q, r 
and X. The following conditions are used to establish limits on the relative sizes of 
these parameters.(Derivations can be found in the Appendix.) 

Condition 1: 

For any given schedule Y(n) in which Xj > T ~) + T ~), j > 1, 

there exists an alternative schedule .~(n) with ~j < T~) + T~I) such that 

"r(n) < T(n).  Hence, from this criterion one can conclude that a schedule must 

have Xi < T ~) + T ~ ,  j > 1 , otherwise the schedule will be suboptimal. 

Condition 2: 

Given a schedule Y(n) withtoj -> T~_~, + T ~ _ ~  + T ~ ,  + T~)  for some j, 

there exists an alternative schedule .7(n) with 

toj < T x + T ~ _ a )  + T ~  + T ~ ) s u c h t h a t  "r(n) < T(n) 
~j-1) -- �9 

From this conclusion, it follows that any minimum tirr~hedule must have 
1 toj < T~j_~) + T ~ _ I )  + T ~ )  + T ~ ) .  

Condition 3: 

For any given schedule ~f(n) satifying conditions l&2 with O > T~,+a) + 0 T~,+ i), 
there exists an alternative schedule ~f(n + 1) such that T(n + 1) < T(n). 

This presents a condition to indicate when the number of slave machines should be 
increased. (Fig.5) 

Condition 4: 

For any given schedule b~ satisfying conditions l&2 such that 

0 < T~.) + -,<l>T~l-nx - T ~  nl there exists an alternative schedule Y(n - 1) such that 

T(n - 1) < T(n), where fll corresponds to the alternate schedule b~ - 1) as 

defined below in (*). This presents a condition to indicate when the number of slav, 

machines should be decreased. (Fig.6) 

" " " " : ~ "  - :0: 

Fig.5 Scheduling too few slave machines 

4 Scheduling Algorithm 
Fig.6 Scheduling too many slave machines 

Relaxing the integral constraint on the scheduled task size, a minimal time sched- 
ule (for n machines) can be found in which toi=0, Xi=0. This solution corresponds to 

Tc ci) + T,ti) = T~i+x) + T,t~+~). Using this relation in conjunction with the definition 
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of total task size, 211~ = N, the n values of 11i can be determined explicitly using 
i = l  

Gaussian elimination on the n linear equations shown in Fig.7. 

(1) T~ o) + T,(~) = Tc~2) + T~(2) 

(n-l) To (n-l) Jr T~._:> = T~.> + T,(.) 

(n) ~ 111 = N 
i ~ l  

Fig.7 Set of linear equations defining schedule with Xi = O, co i = 0 for all i 

Although no closed form solution for n exists, an appropriate number of slave ma- 
chines can be determined by the evaluation of Q as described by conditions 3&4. The 
computational cost of finding the appropriate number of machines is very low due to 

n 

the assumption of linear communication. As 0 -- T~I) - )-'.T,c~) , a change in the 
i=2 

number of slave machines requires only the recalculation of 11! in order to evaluate the 
new 0 value. Constructing the linear system of equations as: 

(1) 112 = a2'rh + b2 

(2) 113 = a3111 "4- b3 

(i) 'l]i = ai111 + bi 

(yi- ,~~ + 13dP,]a whereai  = ~ ' f i ~ , ,  ] i-~ f o r i >  1, 

T o - T O 
Ki-  D ~i) 

bi = yidPo+J3dp, +bi-x  f o r i >  1, 

N -  s  
iffil ( r162  

111 = ~ ,  
fll 

i = l  

Hence the algorithm requires 2p steps to construct the ai and bi values, a maximum of p 
steps to define an appropriate number of slave machines, and a maximum of p steps to 
define the 11i values for the schedule, where p is the total number of slave machines. 

As an actual schedule must stick to integer task sizes, the real valued task sizes 
must be converted to integral values in a manner which does not violate conditions 

1,2,3,4. This integer approximation, ~i, must also satisfy the condition: 2 ~i = N. 
i l l  

A histogram based thresholding technique is used on the non-integral portions of the 11i 

values. This procedure selects a threshold ~ such that 2 ~i = N and requires kn 
l t l  

iffil 

steps where k is the number of bins used in the histogram. As shown in the Appendix, 
this thresholding method does not violate conditions 1 or 2. 

(n-l) 11, = a.11~ + bn bl = 0, a~ = 1. 
We can calculate 111 directly for any n (after the ai and bi values are found) using: 
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5 Low Level Vision Modeling 
The low level computer vision tasks needed for the AVIS computations are: convolu- 

tion, difference of Gaussian,Fourier transform, Hough transform, and morphological filter- 
ing operations. Although explication of these of these algorithms is beyond the scope of 
this paper, thorough discussions can be found in [1] [4] [5][12] [16][17][18]. For the purpose 
of this study, the key algorithmic elements are contained in the model parameters: 

% ~p~, ~o, ~ ,  T O , T o . These algorithm specific parameters are presented in Fig.8. 
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kms.(ix is the 
communication channel overhead (see), 13 is the sec/byte transfer rate of the com- 
munication channel, the image is size NxN, the kernel(i) size is MixM i, and the 
number of elements in the morphological kernel is B.) 

6 Experimental Results 
The heterogeneous distributed architecture included several machine types and con- 

figurations. The machines included HP 9000 715/33s, a MasPar MP-l(1024 processors), 
and SUN SPARCstations- IPXs, LXs, IIGXs, 5s, 20s(l&4processor). For a given algo- 
rithm, a testing set was generated and run on each architecture. Based on the results of 
the test suite, a single y value was assigned to each architecture for that algorithm type. 
The sample mean values of the experimental gamma distributions were used for this 
single value. These values were stored and selectively loaded depending on the configu- 
ration of the parallel virtual machine being used. Similarly, the sample means of the Ix 
and 13 values were used in the scheduling experiments(80001xs&19ps/pixel for the XDR 
protocol). The scheduling algorithm is depicted in the graphic user interface (Fig.9). 

4 ! 
m r l  . . . . . . . . .  

Comparison of theoretical and experimental 
speedups of the modeled schedules are shown 
in Fig.10&Fig.ll for the convolution and 
DOG algorithms. As one would expect, the 
observed speedups were lower than the 
theoretical. The primary cause for this degra- 
dation was the nondeterminism of the commu- 
nication and execution rates on the various 
machines. As the current scheduling algo- 
rithm uses only sample mean approximations 

of these nondeterministic values, it is susceptible to variances in these parameters. Efforts 
were made to run experiments during low usage periods in the day in order to minimize 
these effects. However, even in an isolated distributed system nondeterminism is evi- 
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denced due to memory coherency, operating system overhead, and communication proto- 
cols. Discussion of these nondeterministic issues can be found in [15]. 

12 18 
10 
8 

~ 6 
~ 4 

2 
o 

5 7 9 11 15 17 19 21 
Kernel Size 

[ ]  Theoretical Speedup I~! Actual Speedup 

Fig.10 Theoretical vs Actual Speedup of 
Convolution 

7 Conclusions 
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Fig.11 Theoretical vs Actual Speedup of 
DOG 

The AVIS GUI Scheduler enables the visualization of the speedup of a given distrib- 
uted algorithm. The scheduling technique presented enables the generation of a minimum 
time schedule in polynomial time. The relaxation on machine architecture homogeneity 
enables efficient solutions to low level vision problems using any set of Unix machines 
one has at their disposal. This makes for a system which is both cost effective and reconfi- 
gurable. 

Analyses were presented in terms of machine specific T~ and T0r(i) values. These 
enable a precise description of specific slave communication overheads. Similarly, the 
definition of machine specific neighborhood functions(qbc(i), d~s(i), 0r(i)) is a simple exten- 
sion of the current algorithm and may allow for a more precise description of architectural 
differences between platforms (i.e. memory configuration, pipeline depth, vectorization) 
and communication protocols(XDR, NFS, AFS). Although the formulations presented 
assume a single [3 value, they also can be extended to machine specific [~i. Defining 13i 
enables non-local machines to participate in the distributed algorithm more effectively 
than the current model allows. It is hoped that the inclusion of these parameters will re- 
duce the parameter variance. As the parameter variance is the primarily cause for error 
in the predicted speedup of the schedule, this should create a more accurate theoretical 
model. 
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A p p e n d i x  

Conditionl: For any given schedule Y(n) in which )Cj -> T ~ )  + T ~ ) ,  j > 1, 

there exists an alternative schedule ,?(n) with ~j < T~.) + T~,) such that "r(n) < T(n). 

Proof : For a given Xi , there exists a corresponding task size Tlx ' defined as : 
J 

Xj -- T nxj _ T ~i) which results 

in the following bound: 0 < ~j < Tlad) + Tl,~l)- 

Case 1) If Xi -- 0 V i < j in a given schedule :f(n),the corresponding execution time is : 
. n 

T(n) = )-~T,(1)+ ) -~T,(1)+ [pJ + ;(j + X, 
i = l  i = '  i = j + l  

defining a new schedule .?(n) such that ffl = Th + ~lxj , ~j = Tlj - ~]xj. 

Xj = Xj T~XJ ~xj - ~ ( ~ )  - T ~) 
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The execution lime for that schedule is "F(n) = ~-'T,<i) + ~-~Tai ) + 0 + Zj + Xl 
iffil iffil i f j + l  

where 0 ffi ~ + r ~  ~) + r,~x~ 

Hence, T(n) ffi ~ r , ( i ) +  ~ r ~ r  O + (~+ r ~  ~) + T~I ~) + ~j + ~ 
i a ' l  iffil i m j + l  

I f~  > 0 ,  T(n) - '] ' (n) ~ Z j -  Ta~X[) - T~  j) - ~j = T ~ )  - T~) > 0 ,  

by assumption of T, > T, + T, 

If o < 0 ,  T(n) - T ( n ) = ~ ) -  L@ + r ~ )  + r~XJ~oJ - ZJ 

ffi T aj~ + Ta]~ - L@ + T ~xj,~) + T~)~xJ J 

min(T(n) - T(n)) = T~Jai) - T'xj~,) > 0 ,  max(T(n) - T(n)) ffi T~XJai) + T ~  > 0 

Case 2) If Xi > 0 for some i < j in a given schedule Y(n) : 

Xi = L T ~ - (  ~'~ T~)k - i+ l  + Z T~k)kfl + t~J)J 

L ( ~.~+1 T~k) '-' T'~ -,- L~J)J f o r i < j ,  Zi -- T~i ) -  - T~j~x~ + ~ .  T~k) + ~I) 
k k m l  

as0  ---- Q + T~I~J)+ TKi) ,~gj ~i__Zi _ L Q - T~I~ + T,~I~ J, Xi ~ ~i 

T(n) - T(n) ffi Xj - T ai~x~ - ~j + Xi - L~,J > 0 

Condition 2:  Given a schedule Y(n) with ~oi >_ T ~ _ , )  + T~_ , )  + T ~ )  + T ~ )  

for some j , there exists an alternative schedule Y(n) with 

i r < T~j_,) + T~_I) + T~) + T~)such that ~'(n) < T(n). 

Proof: For any given coj _ Tlaj_l) + T~_I)  + T ~ )  + T~.) an alternate 

mapping can be defined as :flj-i = ~lj-l -- vl~j ,~j ~ l~j "[- l~toj 

Tlaj-1) + TI~j-I) + T~.) + T~)  

Casel)  j f f i2 ,  ~ f f i Q -  r : l*~- r~ l '~ i ,  

I f~>_ ra l  } - T~l~ , r ( n ) - T ( n ) f f i  ra1'~'~ + r ~  > 0.  

qt~j q~J , T(n) - l"(n) ffi ~ -> 0.  If~< T~I ) - To ) 
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Case 2) j > 2, Xj-I = Xj-I - T ~ = J ~ - o -  Tn~J~,/-t~ 

T(n) = E T , ( i )  + Tr(i) + 
i=1 iffil 

n 

T(n) = E T ,  cl) + T,r + 
i = l  i l l  

AsRj  _<0,1f g j-1 

If Xj-I 

11 

L0J § ~x ,  
i =2  

j - 2  

i=2  i f j + l  

_> 0, T(n) - T(n) = T'~i~_~> + 'I~=]~ > 0 .  

< 0, T(n) - T(n) = gj-1 z O. 

i l n  I 1 nr  r '  I 1 " "  " r '  r 

o o satifying conditions Condition 3: For any given schedule Y(n) with 0 > T.t.+t) + T,(.+I) , 

1&2 there exists an alternative schedule Y(n + 1) such that T(n + 1) < T(n). 
~+1 

N - - E b i  
iffil 

Proof: Define a new mapping Y(n + 1) such that 91 = .+1 as defined in (*) 

E, 
iffil 

i f n + l  i = n + l  

The schedule Y(n + 1) has ~ execution time of T(n + 1) = E T'r + E T'~i' + [0J 
i = u  i f n  i=1 i=1 

0 0 T(n + 1) = ET,(0 + T.(.+t) + ET,~0 + T,t.+x) + [01 
i=1 i=1 

L J - _ o qt-fh = T~) T,< 0 - T.(.+I) - T(1) 

"ffi iron i f  n + l  i = n + l  l !1 

T(n) -  T ( n + l )  = Q -  [~J + E T , , < i ) + E T , < o -  E T~i)- E T'<o 
iffil i=1 i=1 iffil 

--  0 Casel) 0 �9 0 ,T(n) - T(n + I) ffi T ~ )  ~'I + T~ l~1  - T,(.+ D > 0 .  

0 0 Case2) 0 < 0 , T ( n ) -  T ( n +  I) = Q -  T,(.+ D -  T,(.+I) > 0 .  

-_-- f - - - \ \ % - T _ _ _ _ _ ? \  - - \  . . . . . .  \ . . . . . . . . . .  - - : - - - f  . . . . . . . . .  ? - - ' - ' - ' . . . . . . ' ~ - ~  : , . f s  f __.fYY_____ff_____. ' f f f f f__fff_2.. . f  ~ _ _ _ _ f f f f f f f f f f f f f f . Y f f Z . , . f i 2  . . . . . . . . .  

Condition 4: For any given schedule Y(n) with 0 < '~,0 + T,~I) nl - T ~ )  nl satisfying 

eonditionsl&2,there exists an alternative schedule Y(n - 1) such that T(n - 1) < T(n). 

i = l l  i = ~  

Proof: Y(n) with the above constraints results in T(n) = E T"0 + E T"i) 
iffil i l l  

n - 1  

N -  E b l  
iffil Define a new mapping Y(n - 1) such that 91 = .-1 

2 ,  
iffil 

as defined in (*) 
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i ~ n  j ~ n  

T(.- :)= ZT.,,- T~., + y T~,, -T~., + t~J 
i=l i=l 

n . _ _ _ ~ _ 

- T~a::)- ~ T,(i) - T~( . ) -  T?(:,)n, __ @ + T~(l)'h + T ~ , ) -  T.n(:,)'h 
i = 2  

n - I  n - I  

11"-- ~ r l i - ~ i '  Ta-) < ~-:T~0 
i = l  i = l  

T ( n ) -  T ( n -  1) = T , ~  - [~] . 

Case I ) ~ -  0, T ( n ) -  T ( n -  1) = T~(.)+T,~.) > 0 

( -) Case 2)0 > O, T(n)- T(n - I) = T~., + T~.)- p + T ~ ;  ~' + T ~ , ) -  T2(:,,"' 

= + .:,,;',- T:a;" ) < + - 

. . . . . . . .  Z ~ . _ 7 _ - L - - ; g e . _ _ - _ - 5 5 5 _ _ 7 5 5 5 -  _ . . . . . . . .  

Effect of threshold, g, and associated approximation ~ i  O i l  Xi " 
Define ~i --- int(rh), ~i = ~ i  if rli - ~ i  < g ,  ~i = ~ i  + 1 ifTli - ~ i  -> g 

I n a x ( ~ ) i  ---~ ~ i ~ c ( I  - -  g )  "{- (~s(1 - -  r  - -  y i ( ~ c r  - -  ( ~ r ;  

max(x):-< T~i ) + T~r - g(T~i ) + T~(i) + T ' < i _ , ) +  r ' m _ , ) )  

max(x)i - T~,) + T~i ) < T ~ ) +  T :aD" 

.'. thresholding will not violate condition 1 . 

. . . . . .  ~ L o_z.:~*======:.:: :==== ~ 

Effect of threshold, g, mad associated approximation ~i on oa i : 

tOi ---- [ Tai-1) + Tiff-1) - ( T , i )  + To(i) ) J 

I~f 'me ~ i  = int('ql), fli = ~i if "qi - ~i < g , "qi = ~i + 1 if ~i - -  ~i ~" g 

~ = LYi~Ai - ,  + dP,f'li-1 + T~ - Yi~P,fli - qb,rli - T~ 

max(~oi) ---- giqbr - g) + qbr(1 - g) - "yi~bcg - ~b,g 

max(%) -- Tie(i_1) - q Tleti_l) + Tltgi_l) - q Tit(i_1) - q Tic(i) - g T~(1) 

< T ~ _  u + T ~ _ : )  + T ~ )  + T 1 ~i)" 
.'. thresholding will not violate condition 2 .  


