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A b s t r a c t .  We explain a new job scheduling class, called "Time Space 
Sharing Scheduling" (TSSS) for partitionable parallel machines. TSSS 
is a combination of time-sharing and space-sharing job scheduling tech- 
niques. Our proposed "Distributed Queue Tree" (DQT) is an instance 
of TSSS. We evaluate and analyze DQT behavior in more detail with 
a number of simulations. The result shows that DQT performs very 
well in low-load to high-load situations, almost independent of system 
size and task size distribution. We also compare our DQT and ScanUp 
batch scheduling, and we find that our DQT performs as well as ScanUp 
scheduling in processor utilization, but that both DQT and ScanUp have 
drawbacks in terms of scheduling fairness. Finally, we find that TSSS can 
inherently achieve higher processor utilization. 

1 I n t r o d u c t i o n  

Work on job scheduling on parallel machines has mostly been on batch scheduling 
with space-sharing where processors are parti t ioned and jobs are allocated on 
these parti t ions [1, 5, 9]. Some commercially available parallel machines have 
t ime-sharing facilities [8]. Few of them, however, tackle both t ime-sharing and 
space-sharing [2, 3]. Table 1 shows a categorization of job scheduling systems 
targeting parallel machines. Time-shared job scheduling on parallel machines 
can take on a different aspect from tha t  on sequential machines, if the target ing 
parallel machine supports variable partitions. This is because space-sharing with 
variable parti t ions 1 can bring an extra  dimension to t ime-shared job scheduling. 

In this paper, we explain a new job scheduling class called T i m e  S p a c e  
S h a r i n g  S c h e d u l i n g  ( T S S S )  to create an interactive programming environ- 

1 "Variable partition" means that partitioning can be controlled using software. "Dy- 
namic partition" enables the partition in which a task or a job is running to be 
dynamically changed on hardware capable of variable partitioning. This definition 
was proposed by Larry Rudolph at IPPS'95 Workshop on Job Scheduling Strategies 
for Parallel Processing 
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T~ble 1. Categorization of job scheduling for a parallel machine 

Batch Time Sharing 
Fixed partition Conventional scheme CM-5 (CMOST) [8] 

Variable partition Many works Dist ibuted Hierarchical Control  [2] 
[1, 5, 9] and so on. Dis t r ibuted Queue Tree [3] 

ment for parallel machines. TSSS is a combination of a time-sharing and space- 
sharing job scheduling techniques for parallel machines with variable partitions. 
We have already proposed the Distributed Queue Tree  ( D Q T )  [3], and DQT 
is an instance of TSSS. In the primary report on DQT [3], we described some 
of its characteristics and proposed several task allocation policies. We did not, 
however, reveal enough DQT characteristics. In this report, DQT is evaluated 
and analyzed with a number of simulations. Here, we focus on: i) the scalability 
of scheduling performance, ii) the relation to task size (the number of processors 
required by a task) distribution, and iii) fairness of scheduling. 

In the next section, we summarize Scan batch scheduling [5], and then explain 
TSSS. In Section 3, DQT, as an instance of TSSS, is introduced briefly. Then 
the simulation results are shown in Section 4. The behavior of DQT is analyzed 
in Sections 4.2 and 4.4, and compared with some batch scheduling techniques 
proposed so far in Section 4.3. 

2 J o b  S c h e d u l i n g  f o r  P a r a l l e l  M a c h i n e s  

2.1 Scan Scheduling 

Krueger et al. proposed a space-sharing scheduling technique called Scan [5]. 
The queuing system consists of multiple queues, and each queue is responsible 
for a partition size. Scan scheduling is centralized and relatively simple. One of 
the queues is selected and the tasks in the queue are scheduled. If the queue 
becomes empty, then the next queue becomes the current queue. If the current 
queue pointer moves toward a queue of larger size, then the scheduling is called 
ScanUp; the opposite is called ScanDown. It has been reported that  ScanUp 
always exhibits better performance than ScanDown [5]. Scan scheduling is con- 
sidered to be the best job scheduling scheme among those proposed so fax. 

2.2 Time Space Sharing Scheduling 

Time Space Sharing Scheduling (TSSS) is a new class of job scheduling tech- 
niques which provides an interactive multi-process programming environment. 
It is a combination of time-shaxing and space-sharing job scheduling techniques 
and is covered in the lower right of Table 1. Figure 1 shows a schematic view 
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of TSSS. TSSS can inherently achieve higher processor utilization, because late- 
coming tasks can remove fragmentat ion of the processor space. One major  draw- 
back of TSSS is the heavier scheduling overhead. I f  TSSS performs bet ter  than  
batch scheduling, then it may  be worth implementing TSSS from the viewpoint 
of resource utilization. To clarify this, we will compare our D Q T  and ScanUp 
scheduling with simulation (Sections 4.3 and 4.4). 

e~rtitlo" partitio" 

.~ ~ - )  
Time 

Fig. 1. Example of TSSS 

In this paper, a process is defined as an execution entity of a task. With 
TSSS, a process exclusively occupies a parti t ion in a certain t ime slot. Each 
processor could be multiplexed at  thread level, not at process level. However, 
this could result in a larger working set and processor thrashing [2]. A parallel 
machine is multiplexed in terms of t ime and processor space with TSSS. A TSSS 
scheduler should schedule a process to a t ime slot and map onto a partition. A 
parti t ion at a certain t ime slot is a virtualized parallel machine and a processor 
address space from the user's viewpoint. 

We assume tha t  the target  parallel machine is homogeneous, and tha t  the 
user cannot specify the parti t ion to which a process allocated. Only the TSSS 
scheduler can decide which part i t ion is allocated. The same situation can be seen 
in the conventional TSS, where the user cannot specify the t ime slot. The oper- 
ating system views a parti t ion as a computa t ional  resource. The TSSS scheduler 
is also a virtual parallel machine server of various sizes. Parti t ions should be allo- 
cated by a TSSS scheduler according to the status of the entire system, normally, 
to balance the system load. 

To develop a scheduling technique with TSSS, the following items should be 
taken into account. 
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- The scheduling process should be distributed and must avoid any bottle- 
necks. In time-sharing, processes can often change state from running to 
waiting and vice versa, especiMly when the processes are waiting for terminal 
input. If a time-sharing scheduling scheme is implemented with a centralized 
queue system, as is the case in conventional sequential machines, this can 
cause a severe bottleneck. 

- A TSSS scheduling scheme should be hardware independent, especially for 
network topology. In most cases, job scheduling is a part  of the operating 
system and operating systems are hard to maintain. If a TSSS scheduling 
scheme imposes a network topology, then the portability of the operating 
system would be lost. 

- The processor utilization ratio can be a measure of TSSS performance. The 
strategies of partitioning and parti t ion allocation for a process are very im- 
portant.  A similar problem can be found in memory allocation [6]. 

- Fairness in scheduling can also be the other measure of TSSS performance. 
Fairness, however, may be traded off against processor utilization in some 
situations. 

- It is desired that  TSSS performance does not saturate with an increase in 
workload, and exhibits the same characteristics in the system size (number 
of processors in a system) and pat tern of given workload. 

3 D i s t r i b u t e d  Q u e u e  T r e e  

We proposed a D i s t r i b u t e d  Queue T r e e  ( D Q T )  [3], which we briefly explain 
in this section. DQT is a distributed tree structure for process scheduling man- 
agement. Each DQT node has a process run queue. Every process in the queue 
requires that  the number of processors does not exceed the partit ion size of the 
node. The DQT tree structure should reflect the nesting of partitioning. Each 
DQT node should be distributed to the processor in the partition corresponding 
to that  node. When a process is suspended, it should be dequeued from the 
process run queue. In DQT, this queue operation is needed only in a processor 
that  plays the role of a DQT node. 

Figure 2-(a) shows an example of a DQT structure. Each DQT node has a 
process run queue that  is represented by small rectangles on the right side of 
the node, with the number of rectangles being equal to the length of the queue. 
The root node, NO, is responsible for the entire processor space (full partition). 
Each of the nodes N1 and N2 is responsible for a halved partition. Each of the 
nodes N3, N4, N5, and N6 is responsible for a quartered partition. 

Figure 2 (b) shows a DQT scheduling example, corresponding to the DQT 
in Fig. 2 (a). In this figure, the j t h  process in the queue Qi of the i th  node is 
denoted as "Qi(j)". The entire processor space is assigned to Q0(0) at t ime slot 
0 and Q0(1) at t ime slot 1. In time slot 2, halved partitions are assigned and two 
processes are simultaneously running in adjacent partitions. In t ime slot 3, the 
right-hand side halved partit ion is halved again, while the left-hand side halved 
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(b) DOT Scheduling 

Fig. 2. Example of DQT 

partit ion is left as is since there are two processes in queue Q1- Every process is 
scheduled at least once in 6 t ime slots in this case. 

DQT scheduling consists of two major parts. One is a distributed scheduling 
algorithm and the other is task allocation to balance the DQT load. 

3.1 DQT Scheduling 

The DQT scheduling process is distributed over the DQT nodes, and the D Q T 
nodes are distributed to the processors in a corresponding partition. Each node 
communicates and synchronizes with its supernode and subnodes only. Thus the 
scheduling process is distributed and parallelized. 

A DQT node is activated when a process in the queue of a node is scheduled. 
At a certain time, the line connecting activated DQT nodes in a tree diagram is 
called a f ron t .  Figure 3 (a) shows an example of a front movement in a DQT. In 
this figure, each small rectangle in a DQT node represents a process in a process 
run queue in that  node. If the DQT load is well-balanced, the front is a horizontal 
line moving repeatedly downward. Lines tO, t l  and t2 in Fig. 3 (a) are examples. 
The front moves faster on the DQT branch with the lighter load (denoted by t3). 
If a part  of the front hits the bot tom of the tree (right half of t3), then it moves 
back to the node where the load is unbalanced (t4). Consequently smaller tasks 
may be scheduled more often than larger tasks. This is to keep processors as 
busy as possible. Predictably, this strategy can cause unfairness. To clarify the 
effect of this scheduling strategy, we propose an alternative scheduling strategy, 
called "Fair-DQT." Fig. 3 (b) is an example of Fair-DQT corresponding Fig. 
3 (a). Every process is scheduled exactly once in a round. The front never goes 
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(a) DQT Scheduling 
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t5 

(b) Fair-DQT Scheduling 

Fig. 3. Example of front movement 

up until every part  of front is synchronized at the bot tom of the DQT. This 
strategy can result in fairer scheduling but  lower processor utilization. We will 
show some simulation results to compare these two DQT scheduling s trategies  
(Sections 4.8 and 4.4). 

3.2 Task Al loca t ion  

The policy used to decide which partition is to be allocated when a process 
is created is very important  to balance the DQT load. A well-balanced DQT 
exhibits not only good processor utilization, but also a shorter response time 
and fair scheduling [3]. We proposed various task allocation policies [3]. 

.......... add task (1) Partition Size 

t , 

Fig. 4. Example of task allocation 

Figure 4 shows an example of one of the proposed policies. The number on 
each DQT node represents the load on the branch. In this case, it is the number 
of virtual processors needed to schedule all processes in the sub-DQT at once. 
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For example, the number on the left node in the second level is 9, because the 
node itself requires 6 virtual processors (three processes times partit ion size two) 
and 3 virtual processors in the subnodes (one for the left subnode and two for 
the right subnode). The add_task message is sent to the root when a partit ion 
for a new process is required. This message is forwarded to the subnode whose 
load is lighter, until it reaches the node that  has the required parti t ion size (in 
this case, the required size is one). This task allocation policy performs very well 
in various situations [3], and is very simple. In this paper, every simulation of 
DQT uses this task allocation policy. 

4 S i m u l a t i o n  

4.1 S i m u l a t i o n  C o n d i t i o n s  a n d  M e a s u r e m e n t s  

Each task size is rounded up to the nearest partition size, in this case a power 
of 2. The processor utilization numbers shown in these simulation results were 
optimistic, since we ignore internal fragmentation and processors which are idle 
because of communication delays, synchronization and/or  waiting for an I /O  
operation. The task size distributions we simulated are uniform, proportional, 
and inversely proportional to the rounded size of the task. Tasks that  require 
the full configuration are omitted because they behave in the same way as a 
single queue system. The distribution of the ideal execution time (task length) 
is exponential with an average of 1,000 time units. Every task is independent, 
and can be scheduled and preempted at any time. The simulation t ime is 10 s 
time units, and the time quantum is one time unit. The scheduling overhead is 
ignored. 

The task arrival distribution is geometric, and the mean task arrival t ime 
(Ti,~te~val) is calculated as 

task_size x task_length 
Tinterval -" 

P x Wta~get 

where task_size is the mean value of the task size (calculated from system size 
and task size distribution), task_length is the mean value of the task service 
time, P is the number of processors in the system (system size), and Wt~g, t  is 
the ratio of workload to system size. 

To evaluate scheduling behavior, the system size (number of processors) is 
varied at 128, 256, 512, 1024, 2048 and 4096. The targeting workload is also 
varied at 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.97 and 0.99. Since task size, task arrival 
and task service t ime are randomized independently, the actual workload may 
differ from the target workload. So, we define the actual workload (W~a~ l )  as 

W~ct~a, = ~'tL----~ x taskdength, )  
P •  

where task_sizel is the task size of t h e / t h  task, task_lengtht is the task length 
of t h e / t h  task, L is the number of tasks arrived, and, T is the simulation time. 
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The actual workload could exceed 1.0, even though the target  workload is less 
than 1.0. We discard the simulation results in such a situation. 

Processor utilization (U~) at t ime t is defined as Ut = P;/P, and the average 
processor utilization (~)  from time tl to t ime tz is defined as 

P x ( t ~ . - t , + l )  

where P ;  is the number of potentially busy processors (or the sum of the numbers 
of processors in activated partitions) at the tth t ime quantum,  and P is the 
number of processors in the entire system. 

Here, the R e a l  Execut ion  Time Ratio  ( R E T R )  2 of t h e / t h  task (R RET) 
is defined as 

Rfgr = t~ ask-end -- ~l§ 

task_lengthl 

where §162 is the t ime of task entry, and t[ as~-end is the t ime the task ends. 
This R E T R  represents how much slower the execution of a task is than the ideal 
situation. 

4.2 D Q T  Simulation Results  

Figure 5 shows the D Q T  simulation result. The three graphs in the upper row 
show the processor utilization curves when varying the workload on each system 
size with the same scale. In those graphs, actual workload values are given on 
the horizontal axis. To show the difference more clearly, only par t  of high load 
situations are drawn. The graphs in the lower row show mean R E T R  curves in 
the same scale. In those graphs, in both  rows from left to right, the task size 
distributions are proportional,  uniform, and inversely proport ional  to task size 
respectively. 

Overall, those simulation results show good linearity to the given workload. 
In all graphs, D Q T  behaves almost independently of system size. Generally, the 
saturation of processor utilization means tha t  the number of remaining tasks in 
the system increases rapidly. These simulation results also show the stability of 
D Q T  in high-load situations. 

D Q T  exhibits a somewhat  poor performance with uniform task size distri- 
bution. With a proport ional  distribution, the processor utilization can remain 
high because of larger tasks, while with an inversely proportional distribution, 
a number  of small tasks can be enough to balance the D Q T  load in high-load 
situations. 

Rea l  Execu t ion  T i m e  is defined as the total duration that a task is in a process 
run queue. In this sense, RETR is different from elapsed time. 
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Fig. 5. DQT Simulation Results 

4.3 D Q T  vs. Batch 

Figure 6 shows graphs of the simulation results of DQT, Fair-DQT, First-Come- 
First-Serve scheduling with Binary Buddy allocation strategy (FCFS-BB), and 
ScanUp using exactly the same situation as in Fig. 5, but with the number of 
processors fixed at 1024. Overall, ScanUp scheduling also exhibits good processor 
utilization for proportional and uniform distribution (the RETR curves of DQT 
and ScanUp are almost overlapped in the figure). However, it exhibits relatively 
lower processor utilization for inversely proportional distribution. 

Interestingly, only a small degradation in processor utilization can be found 
in high-load situations with Fair-DQT. The possible explanation of this phe- 
nomenon is that the latecoming tasks cancel fragmentation. The linearity of 
DQT in processor utilization found in Fig. 5 is also obtained for the same rea- 
son. Figure 7 shows RETR curves of Fair-DQT under the same condition as in 
Fig. 6. The DQT scheduling strategy always results in shorter mean RETRs. In 
these graphs, we show mean RETR values. However, the situation is the same 
with the maximum values of RETR. Thus the DQT scheduling strategy is very 
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efficient to reduce R E T R  values. This means tha t  the s trategy can result in u 
shorter response time. 

As expected, FCFS-BB exhibits the worst performance. The processor uti- 
lization depends strongly on the task size distribution. This phenomenon comes 
from external fragmentation.  Larger tasks are forced to wait for the space occu- 
pied by smaller and longer task(s). 

4.4 Scheduling Fairness 

In Fig. 8, the correlation coefficient between tusk size dimension (log2 (task_size)) 
and R E T R  obtained at the simulation results in Fig. 6 on DQT,  Fair-DQT, 
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and ScanUp scheduling is plotted . In most cases, the correlation coefficients of 
DQT are positive. This means the larger the task size, the less the opportunity 
for scheduling. As described in Section 3.1, this phenomenon happens because 
smaller tasks tend to be scheduled more often to keep processors as busy as 
possible. As supposed, Fair-DQT exhibits bet ter  fairness. 
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With uniform and inversely proportional distributions, the correlation coeffi'- 
cient of DQT tends to be higher in lower-load situations. This phenomenon may 
be because DQT (and Fair-DQT as well) may not have a sufficient number of 
tasks to fill the load imbalance. A positive correlation coefficient has one advan- 
tage; users might hesitate to enter large tasks and this situation could prevent 
the thoughtless wasting processor utilities. 

It  was reported that  ScanUp scheduling has good scheduling fairness [5]. 
However, we found that  the correlation coefficient between task size and re- 
sponse t ime depends on the task size distribution and workload. With  the in- 
verse distribution, fairness is almost guaranteed. However, when larger tasks are 
entered more often, the response time for larger tasks becomes shorter for higher 
workloads. 

5 S u m m a r y  

We have explained a new scheduling class called Time Space Sharing Scheduling 
combining time-sharing and space-sharing for partitionable parallel machines. 
On evaluation through simulations, we found that  our proposed DQT [3], which 
is an instance of TSSS, performs as well as ScanUp scheduling which is possibly 
the best batch scheduling system so far [5]. DQT shows good linearity over given 
workloads, and good independency from task size distribution and system size. 
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In terms of fairness, however, both D Q T  and ScanUp scheduling exhibit some 
dependency on task size distribution and workload. 

Importantly,  this paper  shows tha t  TSSS can inherently achieve higher pro- 
cessor utilization due to the cancellation of external fragmentation of processor 
space by late-coming tasks. Thus, the scheduling overhead of TSSS may be ac- 
ceptable. 

D Q T  scheduling will be implemented on the RWC-1, parallel machine tha t  
is under development in our RWC project [7']. RWC-1 will be implemented with 
some architectural support  for TSSS. With  TSSS and architectural support  [4], 
an interactive programming environment can be implemented on parallel ma- 
chines and it is as practical as t ime-sharing on sequential workstations. 
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