
Time Space Sharing Scheduling:
A Simulation Analysis

Atsushi Hori, Yutaka Ishikawa, JSrg Nolte,
Hiroki Konaka, Munenori Macda, Takashi Tomokiyo

Tsukuba Research Center
Real World Computing Partnership

Tsukuba Mitsui Building 16F, 1-6-1 Takezono
Tsukuba-shi, Ibaraki 305, JAPAN

TEL:+81-298-53-1661, FAX:+81-298-53-1652
E-maih(hori,ishikawa~jon,konaka,m-maeda,t omokiyo)@trc.rwcp.or.jp

A b s t r a c t . We explain a new job scheduling class, called "Time Space
Sharing Scheduling" (TSSS) for partitionable parallel machines. TSSS
is a combination of time-sharing and space-sharing job scheduling tech-
niques. Our proposed "Distributed Queue Tree" (DQT) is an instance
of TSSS. We evaluate and analyze DQT behavior in more detail with
a number of simulations. The result shows that DQT performs very
well in low-load to high-load situations, almost independent of system
size and task size distribution. We also compare our DQT and ScanUp
batch scheduling, and we find that our DQT performs as well as ScanUp
scheduling in processor utilization, but that both DQT and ScanUp have
drawbacks in terms of scheduling fairness. Finally, we find that TSSS can
inherently achieve higher processor utilization.

1 I n t r o d u c t i o n

Work on job scheduling on parallel machines has mostly been on batch scheduling
with space-sharing where processors are parti t ioned and jobs are allocated on
these parti t ions [1, 5, 9]. Some commercially available parallel machines have
t ime-sharing facilities [8]. Few of them, however, tackle both t ime-sharing and
space-sharing [2, 3]. Table 1 shows a categorization of job scheduling systems
targeting parallel machines. Time-shared job scheduling on parallel machines
can take on a different aspect from tha t on sequential machines, if the target ing
parallel machine supports variable partitions. This is because space-sharing with
variable parti t ions 1 can bring an extra dimension to t ime-shared job scheduling.

In this paper, we explain a new job scheduling class called T i m e S p a c e
S h a r i n g S c h e d u l i n g (T S S S) to create an interactive programming environ-

1 "Variable partition" means that partitioning can be controlled using software. "Dy-
namic partition" enables the partition in which a task or a job is running to be
dynamically changed on hardware capable of variable partitioning. This definition
was proposed by Larry Rudolph at IPPS'95 Workshop on Job Scheduling Strategies
for Parallel Processing

624

T~ble 1. Categorization of job scheduling for a parallel machine

Batch Time Sharing
Fixed partition Conventional scheme CM-5 (CMOST) [8]

Variable partition Many works Dist ibuted Hierarchical Control [2]
[1, 5, 9] and so on. Dis t r ibuted Queue Tree [3]

ment for parallel machines. TSSS is a combination of a time-sharing and space-
sharing job scheduling techniques for parallel machines with variable partitions.
We have already proposed the Distributed Queue Tree (D Q T) [3], and DQT
is an instance of TSSS. In the primary report on DQT [3], we described some
of its characteristics and proposed several task allocation policies. We did not,
however, reveal enough DQT characteristics. In this report, DQT is evaluated
and analyzed with a number of simulations. Here, we focus on: i) the scalability
of scheduling performance, ii) the relation to task size (the number of processors
required by a task) distribution, and iii) fairness of scheduling.

In the next section, we summarize Scan batch scheduling [5], and then explain
TSSS. In Section 3, DQT, as an instance of TSSS, is introduced briefly. Then
the simulation results are shown in Section 4. The behavior of DQT is analyzed
in Sections 4.2 and 4.4, and compared with some batch scheduling techniques
proposed so far in Section 4.3.

2 J o b S c h e d u l i n g f o r P a r a l l e l M a c h i n e s

2.1 Scan Scheduling

Krueger et al. proposed a space-sharing scheduling technique called Scan [5].
The queuing system consists of multiple queues, and each queue is responsible
for a partition size. Scan scheduling is centralized and relatively simple. One of
the queues is selected and the tasks in the queue are scheduled. If the queue
becomes empty, then the next queue becomes the current queue. If the current
queue pointer moves toward a queue of larger size, then the scheduling is called
ScanUp; the opposite is called ScanDown. It has been reported that ScanUp
always exhibits better performance than ScanDown [5]. Scan scheduling is con-
sidered to be the best job scheduling scheme among those proposed so fax.

2.2 Time Space Sharing Scheduling

Time Space Sharing Scheduling (TSSS) is a new class of job scheduling tech-
niques which provides an interactive multi-process programming environment.
It is a combination of time-shaxing and space-sharing job scheduling techniques
and is covered in the lower right of Table 1. Figure 1 shows a schematic view

625

of TSSS. TSSS can inherently achieve higher processor utilization, because late-
coming tasks can remove fragmentat ion of the processor space. One major draw-
back of TSSS is the heavier scheduling overhead. I f TSSS performs bet ter than
batch scheduling, then it may be worth implementing TSSS from the viewpoint
of resource utilization. To clarify this, we will compare our D Q T and ScanUp
scheduling with simulation (Sections 4.3 and 4.4).

e~rtitlo" partitio"

.~ ~ -)
Time

Fig. 1. Example of TSSS

In this paper, a process is defined as an execution entity of a task. With
TSSS, a process exclusively occupies a parti t ion in a certain t ime slot. Each
processor could be multiplexed at thread level, not at process level. However,
this could result in a larger working set and processor thrashing [2]. A parallel
machine is multiplexed in terms of t ime and processor space with TSSS. A TSSS
scheduler should schedule a process to a t ime slot and map onto a partition. A
parti t ion at a certain t ime slot is a virtualized parallel machine and a processor
address space from the user's viewpoint.

We assume tha t the target parallel machine is homogeneous, and tha t the
user cannot specify the parti t ion to which a process allocated. Only the TSSS
scheduler can decide which part i t ion is allocated. The same situation can be seen
in the conventional TSS, where the user cannot specify the t ime slot. The oper-
ating system views a parti t ion as a computa t ional resource. The TSSS scheduler
is also a virtual parallel machine server of various sizes. Parti t ions should be allo-
cated by a TSSS scheduler according to the status of the entire system, normally,
to balance the system load.

To develop a scheduling technique with TSSS, the following items should be
taken into account.

626

- The scheduling process should be distributed and must avoid any bottle-
necks. In time-sharing, processes can often change state from running to
waiting and vice versa, especiMly when the processes are waiting for terminal
input. If a time-sharing scheduling scheme is implemented with a centralized
queue system, as is the case in conventional sequential machines, this can
cause a severe bottleneck.

- A TSSS scheduling scheme should be hardware independent, especially for
network topology. In most cases, job scheduling is a part of the operating
system and operating systems are hard to maintain. If a TSSS scheduling
scheme imposes a network topology, then the portability of the operating
system would be lost.

- The processor utilization ratio can be a measure of TSSS performance. The
strategies of partitioning and parti t ion allocation for a process are very im-
portant. A similar problem can be found in memory allocation [6].

- Fairness in scheduling can also be the other measure of TSSS performance.
Fairness, however, may be traded off against processor utilization in some
situations.

- It is desired that TSSS performance does not saturate with an increase in
workload, and exhibits the same characteristics in the system size (number
of processors in a system) and pat tern of given workload.

3 D i s t r i b u t e d Q u e u e T r e e

We proposed a D i s t r i b u t e d Queue T r e e (D Q T) [3], which we briefly explain
in this section. DQT is a distributed tree structure for process scheduling man-
agement. Each DQT node has a process run queue. Every process in the queue
requires that the number of processors does not exceed the partit ion size of the
node. The DQT tree structure should reflect the nesting of partitioning. Each
DQT node should be distributed to the processor in the partition corresponding
to that node. When a process is suspended, it should be dequeued from the
process run queue. In DQT, this queue operation is needed only in a processor
that plays the role of a DQT node.

Figure 2-(a) shows an example of a DQT structure. Each DQT node has a
process run queue that is represented by small rectangles on the right side of
the node, with the number of rectangles being equal to the length of the queue.
The root node, NO, is responsible for the entire processor space (full partition).
Each of the nodes N1 and N2 is responsible for a halved partition. Each of the
nodes N3, N4, N5, and N6 is responsible for a quartered partition.

Figure 2 (b) shows a DQT scheduling example, corresponding to the DQT
in Fig. 2 (a). In this figure, the j t h process in the queue Qi of the i th node is
denoted as "Qi(j)". The entire processor space is assigned to Q0(0) at t ime slot
0 and Q0(1) at t ime slot 1. In time slot 2, halved partitions are assigned and two
processes are simultaneously running in adjacent partitions. In t ime slot 3, the
right-hand side halved partit ion is halved again, while the left-hand side halved

QO Q2

6

627

(a) DQT Structure

0
1
2
3
4
S

6
7
8
9
10
11

12

PEO ! PE1 i PE2 i PE3
(ao(O)
OoO)

. oiio) ol (o) I
Q1(1) 'i Os(O) Y 06(0)

Qo(O)
QO0)

Q1 (0) i Q2 (0)
Q~o) !"~i(oi.--" Q6o)

Q3(o) ~ Q4(o) i ~ iOi i os(o)
Q3(O) i Q4(1) i"Qs(~;)"i Q6(1)

Qo(O)

(b) DOT Scheduling

Fig. 2. Example of DQT

partit ion is left as is since there are two processes in queue Q1- Every process is
scheduled at least once in 6 t ime slots in this case.

DQT scheduling consists of two major parts. One is a distributed scheduling
algorithm and the other is task allocation to balance the DQT load.

3.1 DQT Scheduling

The DQT scheduling process is distributed over the DQT nodes, and the D Q T
nodes are distributed to the processors in a corresponding partition. Each node
communicates and synchronizes with its supernode and subnodes only. Thus the
scheduling process is distributed and parallelized.

A DQT node is activated when a process in the queue of a node is scheduled.
At a certain time, the line connecting activated DQT nodes in a tree diagram is
called a f ron t . Figure 3 (a) shows an example of a front movement in a DQT. In
this figure, each small rectangle in a DQT node represents a process in a process
run queue in that node. If the DQT load is well-balanced, the front is a horizontal
line moving repeatedly downward. Lines tO, t l and t2 in Fig. 3 (a) are examples.
The front moves faster on the DQT branch with the lighter load (denoted by t3).
If a part of the front hits the bot tom of the tree (right half of t3), then it moves
back to the node where the load is unbalanced (t4). Consequently smaller tasks
may be scheduled more often than larger tasks. This is to keep processors as
busy as possible. Predictably, this strategy can cause unfairness. To clarify the
effect of this scheduling strategy, we propose an alternative scheduling strategy,
called "Fair-DQT." Fig. 3 (b) is an example of Fair-DQT corresponding Fig.
3 (a). Every process is scheduled exactly once in a round. The front never goes

628

tO ~ -Y~-r: : / tO

tl ~ -- ~ tl
t2 . ~ ~ t2

t3 ~ t4
t4 t3

t5 " " ~ J ~ ~ ~ t5

(a) DQT Scheduling

tO ~.....,.~_..~___.~._:_.~___._...~,.....~ tO

t2 t2

t4 t3

t5 t4
t5

(b) Fair-DQT Scheduling

Fig. 3. Example of front movement

up until every part of front is synchronized at the bot tom of the DQT. This
strategy can result in fairer scheduling but lower processor utilization. We will
show some simulation results to compare these two DQT scheduling s trategies
(Sections 4.8 and 4.4).

3.2 Task Al loca t ion

The policy used to decide which partition is to be allocated when a process
is created is very important to balance the DQT load. A well-balanced DQT
exhibits not only good processor utilization, but also a shorter response time
and fair scheduling [3]. We proposed various task allocation policies [3].

.......... add task (1) Partition Size

t ,

Fig. 4. Example of task allocation

Figure 4 shows an example of one of the proposed policies. The number on
each DQT node represents the load on the branch. In this case, it is the number
of virtual processors needed to schedule all processes in the sub-DQT at once.

629

For example, the number on the left node in the second level is 9, because the
node itself requires 6 virtual processors (three processes times partit ion size two)
and 3 virtual processors in the subnodes (one for the left subnode and two for
the right subnode). The add_task message is sent to the root when a partit ion
for a new process is required. This message is forwarded to the subnode whose
load is lighter, until it reaches the node that has the required parti t ion size (in
this case, the required size is one). This task allocation policy performs very well
in various situations [3], and is very simple. In this paper, every simulation of
DQT uses this task allocation policy.

4 S i m u l a t i o n

4.1 S i m u l a t i o n C o n d i t i o n s a n d M e a s u r e m e n t s

Each task size is rounded up to the nearest partition size, in this case a power
of 2. The processor utilization numbers shown in these simulation results were
optimistic, since we ignore internal fragmentation and processors which are idle
because of communication delays, synchronization and/or waiting for an I /O
operation. The task size distributions we simulated are uniform, proportional,
and inversely proportional to the rounded size of the task. Tasks that require
the full configuration are omitted because they behave in the same way as a
single queue system. The distribution of the ideal execution time (task length)
is exponential with an average of 1,000 time units. Every task is independent,
and can be scheduled and preempted at any time. The simulation t ime is 10 s
time units, and the time quantum is one time unit. The scheduling overhead is
ignored.

The task arrival distribution is geometric, and the mean task arrival t ime
(Ti,~te~val) is calculated as

task_size x task_length
Tinterval -"

P x Wta~get

where task_size is the mean value of the task size (calculated from system size
and task size distribution), task_length is the mean value of the task service
time, P is the number of processors in the system (system size), and Wt~g, t is
the ratio of workload to system size.

To evaluate scheduling behavior, the system size (number of processors) is
varied at 128, 256, 512, 1024, 2048 and 4096. The targeting workload is also
varied at 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.97 and 0.99. Since task size, task arrival
and task service t ime are randomized independently, the actual workload may
differ from the target workload. So, we define the actual workload (W~a~ l) as

W~ct~a, = ~'tL----~ x taskdength,)
P •

where task_sizel is the task size of t h e / t h task, task_lengtht is the task length
of t h e / t h task, L is the number of tasks arrived, and, T is the simulation time.

630

The actual workload could exceed 1.0, even though the target workload is less
than 1.0. We discard the simulation results in such a situation.

Processor utilization (U~) at t ime t is defined as Ut = P;/P, and the average
processor utilization (~) from time tl to t ime tz is defined as

P x (t ~ . - t , + l)

where P ; is the number of potentially busy processors (or the sum of the numbers
of processors in activated partitions) at the tth t ime quantum, and P is the
number of processors in the entire system.

Here, the R e a l Execut ion Time Ratio (R E T R) 2 of t h e / t h task (R RET)
is defined as

Rfgr = t~ ask-end -- ~l§

task_lengthl

where §162 is the t ime of task entry, and t[as~-end is the t ime the task ends.
This R E T R represents how much slower the execution of a task is than the ideal
situation.

4.2 D Q T Simulation Results

Figure 5 shows the D Q T simulation result. The three graphs in the upper row
show the processor utilization curves when varying the workload on each system
size with the same scale. In those graphs, actual workload values are given on
the horizontal axis. To show the difference more clearly, only par t of high load
situations are drawn. The graphs in the lower row show mean R E T R curves in
the same scale. In those graphs, in both rows from left to right, the task size
distributions are proportional, uniform, and inversely proport ional to task size
respectively.

Overall, those simulation results show good linearity to the given workload.
In all graphs, D Q T behaves almost independently of system size. Generally, the
saturation of processor utilization means tha t the number of remaining tasks in
the system increases rapidly. These simulation results also show the stability of
D Q T in high-load situations.

D Q T exhibits a somewhat poor performance with uniform task size distri-
bution. With a proport ional distribution, the processor utilization can remain
high because of larger tasks, while with an inversely proportional distribution,
a number of small tasks can be enough to balance the D Q T load in high-load
situations.

Rea l Execu t ion T i m e is defined as the total duration that a task is in a process
run queue. In this sense, RETR is different from elapsed time.

631

1

e-

o 0 . 9 5

Q_

1 2 8

- - - ,~- - - - 2 0 4 8

Proporlional

0.85
0.85 0.9 0.95

I I

tn,,
n . -

e -

0.2 0.4 0.6 0.8
30 = I I

Proportional

20 ~-

10. -i - ~

0

--.,o,,.-- 256 .---o-- 512

4 0 9 6 :.~ Ideal

Uniform ~.
/ .

i

0.85 0.9 0.95
Workload Factor

0.2 0.4 0.6 0.8
i i !
Uniform

1024

............. ,overse i i

0.85 0.9 0.95

0.2 0.4 0.6 0.8
I

! Inverse

Fig. 5. DQT Simulation Results

4.3 D Q T vs. Batch

Figure 6 shows graphs of the simulation results of DQT, Fair-DQT, First-Come-
First-Serve scheduling with Binary Buddy allocation strategy (FCFS-BB), and
ScanUp using exactly the same situation as in Fig. 5, but with the number of
processors fixed at 1024. Overall, ScanUp scheduling also exhibits good processor
utilization for proportional and uniform distribution (the RETR curves of DQT
and ScanUp are almost overlapped in the figure). However, it exhibits relatively
lower processor utilization for inversely proportional distribution.

Interestingly, only a small degradation in processor utilization can be found
in high-load situations with Fair-DQT. The possible explanation of this phe-
nomenon is that the latecoming tasks cancel fragmentation. The linearity of
DQT in processor utilization found in Fig. 5 is also obtained for the same rea-
son. Figure 7 shows RETR curves of Fair-DQT under the same condition as in
Fig. 6. The DQT scheduling strategy always results in shorter mean RETRs. In
these graphs, we show mean RETR values. However, the situation is the same
with the maximum values of RETR. Thus the DQT scheduling strategy is very

632

DQT
1

!o .~ i i i

0.4
0.4 0.6 0.8

- - -a - - Fair-DQT ---~--- FCFS-BB ---4v-- ScanUp

"Uniform i ~"~

............. ~ _ ! '_

0,4

----~,,-= Ideal

. r ~

~ k

0.6 0.8 1 0.4 0.6 0.8
Workload Factor

Fig. 6. DQT vs. Batch Scheduling

60

50-

40.
I . U

rr 30.
e . -

~ 20-

10.

0
0.2

DQT - - -0- - Fair-DQT

Proportional Uniform ' = I n v e r s e]]

ii:i:iiiiiiii::iiiiiiiiiiiiiilEii::i:ilil, .iiii:iiiiiiiiiii::iii:iiiiiiiii:iiiiiiill !:i:1111111iliii::ii1iliiiii:i:iliiiii~] ~+

i i 1 i i t i ', i i i i ++ i / !
-i ~ i i - -~ - { + i + i---t++ + + i i i~! +-t

i;ii:i:iiiii:::::iiii:i::i:iiiiil}:.: .: ~ t ~ i i : iiiiii:iiii::iiiiiiii:~----iil ~tli:i:i::i:iiiiiii:i~iiiii--i;i ++... ~ !
,- - , . - , ~ , , , ; ',

0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Workload Factor

Fig. 7. RETR of Fair-DQT

efficient to reduce R E T R values. This means tha t the s trategy can result in u
shorter response time.

As expected, FCFS-BB exhibits the worst performance. The processor uti-
lization depends strongly on the task size distribution. This phenomenon comes
from external fragmentation. Larger tasks are forced to wait for the space occu-
pied by smaller and longer task(s).

4.4 Scheduling Fairness

In Fig. 8, the correlation coefficient between tusk size dimension (log2 (task_size))
and R E T R obtained at the simulation results in Fig. 6 on DQT, Fair-DQT,

633

and ScanUp scheduling is plotted . In most cases, the correlation coefficients of
DQT are positive. This means the larger the task size, the less the opportunity
for scheduling. As described in Section 3.1, this phenomenon happens because
smaller tasks tend to be scheduled more often to keep processors as busy as
possible. As supposed, Fair-DQT exhibits bet ter fairness.

---o--- Proportional - - o . - - Uniform
0.4

DQT

o12 0.4 0.6 o~8 ;

Fair-DQT

I

f
! !

0.2 014 0.6 0.8

Workload Factor

Inverse

I

I
0.2 0.4

Fig. 8. Task Size Correlation (21~ processors)

/
\

0.6 0.8 1

With uniform and inversely proportional distributions, the correlation coeffi'-
cient of DQT tends to be higher in lower-load situations. This phenomenon may
be because DQT (and Fair-DQT as well) may not have a sufficient number of
tasks to fill the load imbalance. A positive correlation coefficient has one advan-
tage; users might hesitate to enter large tasks and this situation could prevent
the thoughtless wasting processor utilities.

It was reported that ScanUp scheduling has good scheduling fairness [5].
However, we found that the correlation coefficient between task size and re-
sponse t ime depends on the task size distribution and workload. With the in-
verse distribution, fairness is almost guaranteed. However, when larger tasks are
entered more often, the response time for larger tasks becomes shorter for higher
workloads.

5 S u m m a r y

We have explained a new scheduling class called Time Space Sharing Scheduling
combining time-sharing and space-sharing for partitionable parallel machines.
On evaluation through simulations, we found that our proposed DQT [3], which
is an instance of TSSS, performs as well as ScanUp scheduling which is possibly
the best batch scheduling system so far [5]. DQT shows good linearity over given
workloads, and good independency from task size distribution and system size.

634

In terms of fairness, however, both D Q T and ScanUp scheduling exhibit some
dependency on task size distribution and workload.

Importantly, this paper shows tha t TSSS can inherently achieve higher pro-
cessor utilization due to the cancellation of external fragmentation of processor
space by late-coming tasks. Thus, the scheduling overhead of TSSS may be ac-
ceptable.

D Q T scheduling will be implemented on the RWC-1, parallel machine tha t
is under development in our RWC project [7']. RWC-1 will be implemented with
some architectural support for TSSS. With TSSS and architectural support [4],
an interactive programming environment can be implemented on parallel ma-
chines and it is as practical as t ime-sharing on sequential workstations.

R e f e r e n c e s

1. P.-J. Chuang and N.-F. Tzeng. A Fast Recognition-Complete Processor Allocation
Strategy for Hypercube Computers. IEEE Transaction8 on Computers, 41(4):467-
479, 1992.

2. D. G. Feitelson and L. Rudolph. Distributed Hierarchical Control for Parallel Pro-
cessing. COMPUTER, pages 65-77, May 1990.

3. A. Hori, Y. Ishikawa, H. Konaka, M. Maeda, and T. Tomokiyo. A Scalable Time-
Sharing Scheduling for Partltionable, Distributed Memory Parallel Machines. In
Proceedings of the Twenty-Eighth Annual Hawaii International Conference on Sys-
tem Sciences, volume II, pages 173-182. IEEE Computer Society Press, January
1995.

4. A. Hori, T. Yokota, Y. Ishikawa, S. Sakal, H. Konaka, M. Maeda, T. Tomokiyo,
J. Nolte, H. Matsuoka, K. Okamoto, and H. Hirono. Time Space Sharing Schedul-
ing and Architectural Support. In D. G. Feitelson and L. Rudolph, editors, Job
Scheduling Strategie~ for Parallel Processing, volume 949 of Lecture Notes in Com-
puter Science. Springer-Verlag, April 1995.

5. P. Krueger, T.-H. Lai, and V. A. Dixit-Radiya. Job Scheduling Is More Impor-
tant than Processor Allocation for Hypercube Computers. IEEE Transactions on
Parallel and Distributed Systems, 5(5):488-497, 1994.

6. J. L. Peterson and T. A. Norman. Buddy System. Communication of the ACM,
20(6):421-431, June 1977.

7. S. Sakai, K. Okamoto, H. Matsuoka, H. Hirono, Y. Kodama, and M. Sato. Super-
threading: Architectural and software mechanisms for optimizing parallel compu-
tation. In Proceedin9~ of 1993 International Conference on Supercomputing, pages
251-260, 1993.

8. Thinking Machines Corporation. Connection Machine CM-5 Technical Summary,
November 1992.

9. Y. Zhu. Efficient Processor Allocation Strategies for Mesh-Connected Parallel Com-
puters. Journal of Parallel and Distributeel Computing, 16:328-337, 1992.

