
ETH Library

A group and session management
system for distributed multimedia
applications

Report

Author(s):
Wilde, Erik; Freiburghaus, Pascal; Koller, Daniel; Plattner, Bernhard

Publication date:
1996

Permanent link:
https://doi.org/10.3929/ethz-a-004667097

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004667097
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


A Group and Session Management System

for Distributed Multimedia Applications

Erik Wilde, Pascal Freiburghaus, Daniel Koller, Bernhard Plattner

Computer Engineering and Networks Laboratory (TIK)

Swiss Federal Institute of Technology (ETH Z�urich)

CH { 8092 Z�urich

Abstract. Distributed multimedia applications are very demanding with

respect to support they require from the underlying group communica-

tion platform. In this paper, an approach is described which aims at pro-

viding group communication platform designers with a component which

can be used for powerful group and session management functionality.

This component, which can be integrated into group communication plat-

forms, is part of a system called the group and session management sys-

tem (GMS). The GMS model consists of GMS user agents, which are

the components to be integrated into group communication platforms,

and GMS system agents which are distributed directory agents providing

the distributed database which the user agents access. Communication

between these two types of agents is de�ned in two protocols, the GMS

access protocol between user agents and system agents, and the GMS

system protocol between system agents. GMS also de�nes a number of

objects and relations which can be used to manage users, groups, and

sessions on a very abstract level, thus providing both group communi-

cation platform designers and programmers of distributed multimedia

application with a high-level description of group communications. This

approach enables a truly integrated approach for collaborative applica-

tions, where all applications, even when using di�erent group commu-

nication platforms, can share the same database about users, groups,

and sessions. The paper also contains a short description of the ongoing

implementation of GMS's components.

1 Introduction

Computer communications in the last years can, when looking from the level of
a user of communication systems, be seen as focusing on two aspects, which are
multimedia and multipoint communications. Both aspects can be approached in
a number of di�erent ways, ranging from very low-level, being concerned only
with transport technology, to very abstract models, which take multimedia mul-
tipoint communications for granted and deal only with the design of applications
and their interfaces. In general, various surveys [5, 16, 17, 19, 26] have shown
that the need for communication platforms supporting multipoint communica-
tions is increasing. However, we feel that there is much more work being done
in the �eld of multimedia than in the �eld of multiuser communication systems.



In this paper, we describe a system which is speci�cally designed to sup-
port distributed multimedia applications. Our approach is that of a component
which can easily be integrated into group communication platforms to provide
them with sophisticated group and session management functions. This design
is motivated by the following observations:

{ When considering group communications, the need for a common informa-
tion base for current and potential group communication participants be-
comes very important. Only if the properties of a group communication
are known to potential participants, it is possible for them to have enough
knowledge to join the group communication. Thus, a directory for informa-
tion related to group communications is necessary.

{ Observations of research projects implementing distributed multimedia ap-
plications show that some of the functionality is repeatedly implemented in
each application. Examples for this observation are the BERKOM Multi-
media Collaboration Service (MMC) described by Altenhofen et al. [1] with
its Conference Directory (CD), the CoDraft system described by Kirsche et
al. [16] with its multi-party communication platform, and the Joint Viewing
and Tele-Operation Service (JVTOS) described by Gutekunst et al. [7] with
its Session Management Service (SMS). Consequently, it would also be use-
ful to have a reusable software component which can be used to access the
directory mentioned in the �rst item.
Another aspect of this issue is that, ironically, most of today's collaborative
software is not able to collaborate with other collaborative software, because
in each product a di�erent model of collaboration (such as identi�cation of
users and groups, authorization, or creation of data connections) is used. We
therefore also see our work as one step towards collaborative software which
not only supports collaborative users, but also makes it easily possible to
collaboratively use di�erent products.

The design of the group and session management system primarily focuses
on creating a model of group and session management which can be adopted
for existing as well as new group communication frameworks and which provides
application programmers (ie users of the group communication frameworks) with
a powerful abstraction to handle group communications. In this paper we also
describe an architecture which implements the group and session management
model and which has been implemented at our lab. It is currently integrated
into the Multipoint Communication Framework described by Bauer et al. [3],
which will then serve as the �rst example of a group communication framework
o�ering the above mentioned functionality.

The paper is structured as follows. Section 2 gives a short description of
selected related work. In this section we will describe research as well as stan-
dardization activities. Section 3 describes the requirements which has been used
when designing our model for group and session management. Section 4 then
gives a description of the model as well as the architecture which we developed
to implement the model. The main components here are the data model and the



two protocols which are used for data transfer within our system. In Section 5,
we describe the implementation of our prototype. This section focuses on the
two main building blocks of our architecture, which are two types of agents.
Finally, Section 6 concludes the paper and gives some �nal remarks as well as
some discussions of our plans for the future.

2 Related Work

In the Internet world, work is going on in the Multiparty Multimedia Ses-
sion Control (MMUSIC) working group of the Internet Engineering Task Force
(IETF). One result of this work is a description of the Internet multimedia con-
ferencing architecture by Handley et al. [9], which is shown in Figure 1. The
component of this architecture which is most relevant for our work is the session
directory, which is based on the Session Description Protocol (SDP) v2 described
by Handley and Jacobson [10]. However, since SDP can only be used for session
advertisement, because it is only used for the distribution of announcements,
an additional protocol is required which is used for speci�cally inviting users to
sessions. This protocol is the Simple Conference Invitation Protocol (SCIP) and
is described by Schulzrinne [22]. This splitting of session relevant information
into two separate protocols has been caused by the development of the mbone
(a good overview of the mbone is given by Eriksson [6]), which originally was
only used for multicasting sessions with a simple session announcement protocol
(SDP v1). Since a more powerful support of group communications also needs a
way to identify users and groups of users, we believe that a new design than the
one currently being in use for the mbone is necessary.

Audio Video Shared
Tools SDP

SDAP HTTP SMTP

TCP

IP

RSVP

Conference
Control

Session Directory

UDP

RTP and RTCP

Fig. 1. Internet multimedia conferencing protocol stacks

CIO multi-peer communications as described by Henckel [11] is a very in-
teresting concept in terms of functionality. The transport group management
de�ned for the CIO transport service has many similarities to the model we
describe in this paper. A user of the CIO multi-peer transport service uses two
di�erent components for accessing the transport service and the transport group
management service. Communications are handled with two completely separate



protocols. However, CIO transport group management is limited to one commu-
nications platform (ie depends on the usage of the CIO transport service), and
it has not been implemented. Furthermore, since the X.500 directory service is
proposed as a basis for the transport group management service, it will be im-
possible to have noti�cations sent to users, since X.500 is not capable of DSAs
actively sending data to DUAs.

ITU's T.120 series of recommendations [13] is an example for a standardized
architecture which also incorporates group and session management functional-
ity. The basis of the T.120 infrastructure as shown in Figure 2 are the network
speci�c transport protocols de�ned in T.123, which at the moment support data
transfer using integrated services digital networks (ISDN), circuit switched dig-
ital networks (CSDN), public switched digital networks (PSDN), and public
switched telephone networks (PSTN). Extensions to include future broadband
networks are under study. T.123 is used by the multipoint communications ser-
vice T.122/T.125, which de�nes a network independent service with exible data
transfer modes (broadcast and request/response), multipoint addressing (one to
all, one to sub-group, and one to one), and multipoint routing (shortest paths
to each receiver and uniform sequencing). Recommendation T.124 then de�nes
a generic conference control which uses T.122's multipoint communications ser-
vice. The abstract services of the conference control include create, query, join,
invite, add, lock, unlock, disconnect, terminate, eject user, and transfer services.
These services provide a powerful environment for implementing conferencing ap-
plications, which then use T.124 and T.122 services. However, the applicability
of these recommendations is limited because only the transport infrastructures
de�ned in T.123 can be used. The T.120 series of recommendations can there-
fore be regarded as one speci�c example which should be kept in mind when
designing more general group and session management services.

T.120 Infrastructure Recommendations

Generic Conference Control (T.124)

Application

Multipoint Communications Service (T.122/T.125)

Network Specific Transport Protocols (T.123)

Fig. 2. Architecture of the ITU T.120 infrastructure recommendations



Other examples of multimedia communication systems dealing with group
support have been described by Mauthe et al. [17]. However, all these approaches
either do not concentrate on group and session management or they are restricted
to certain transport infrastructures, or both. We therefore see the necessity to
de�ne a group and session management service which is independent from the
transport infrastructure being used and provides a very abstract model of group
communications.

3 Group and Session Management Requirements

Within this section, we identify the tasks related to group and session manage-
ment which a group communication framework needs to perform. Group and
session management in this context encompasses the storage and management
of all information which is related to users (being the individuals working with
applications), groups (which are sets of users and/or other groups), and sessions.
Sessions are the representation of actual collaborations (instantiated by data ex-
change between distributedly working users) and can consist of one or more data
ows (eg audio and video).

The main goal of the group and session management system (GMS) project
is to design and develop a component which �lls the gap between multipoint
transport infrastructures as they are designed in actual research projects, and
programmers of distributed multimedia applications. Another goal is to develop
the infrastructure which is used by such a component. We therefore aim at pro-
viding these programmers with an API which is more powerful than the inter-
faces of common multipoint transport infrastructures. Our approach is to create
a component which can be included into group communication frameworks in
order to enhance their functionality. Figure 3 shows how this approach may
be used, where GUA stands for GMS user agent and identi�es the component
provided by GMS. This component interacts with security and resource man-
agement components inside the group communication framework. It can be seen
that the component is only one part of the group communication framework.
Other components may be used for security purposes (in order to provide secure
data communications), or for resource management, which could also include the
mapping of application-level QoS parameters to network-level QoS parameters.
However, we will now concentrate on the issue of group and session management.

What are the requirements such a component needs to ful�ll? First and
foremost, the data model used must be general enough to cover the majority
of possible applications of the group communication framework. This means
that both the objects and the available operations must be designed to allow
a broad range of distributed multimedia applications. The abstractions needed
must encompass users, groups of users, data connections between user groups,
and a grouping mechanism for these data connections, because many applications
need multiple data streams and it would be helpful to be able to handle these



Security
Management

Resource
GUA

Management

Application

API

Transport Infrastructure(s)

Data

Fig. 3. Group and session management inside a group communication framework

together, especially with respect to authorization1 and admission control2 issues.
Furthermore, the component must be easy to integrate into existing group

communication frameworks, and it must also be easy to exchange the transport
infrastructure the component is using. This is a requirement because we do
not want to restrict our model of group and session management to a single
transport infrastructure. It has to be possible to incorporate the group and
session management component into di�erent group communication frameworks
and to still be able to share as much information as possible. Naturally, transport
speci�c information (such as addresses or QoS parameters) can not be used by
group communication frameworks based on di�erent transport infrastructures,
but a lot of information, such as user identities, user authentication information,
groups, and access rights, is useful independently of the transport infrastructure
being used.

So far, we have mainly discussed the topics which are relevant for the support
of collaborative (or distributed) applications. The aspect of multimedia commu-
nications requires additional support. However, in can be seen as a special case
of communications, where data is being transmitted which requires handling
with certain properties such as delay and delay jitter. In order to support dis-
tributed multimedia applications, it must be possible to specify the properties
of a data connection in a way which is appropriate for multimedia data. The
main idea in this area is the utilization of Quality-of-Service (QoS) parameters
which make it possible to specify properties of a data connection. Because mul-

1 Authorization control is performed to check whether a user is allowed to participate

in a certain group communication. It is based on proper authentication of users and

access privileges being assigned to objects.
2 Admission control is used to check whether it is possible for a user to participate

in a certain group communication. Admission control typically fails if there are not

enough resources, such as local processing power or network capacity.



timedia data connections may have interdependencies, it must also possible to
specify these. Examples for these interdependencies are synchronized data con-
nections, which are common when individually transmitting audio and video
data for video-phone applications. Another example would be the dependency
of data connections when using hierarchical encodings.

As a conclusion, for the support of group and session management tasks
of distributed multimedia applications, we need a system which provides con-
nectivity throughout the lifetime of data connections, which may actively send
noti�cations to applications, and an appropriate data model for the data inside
the system. In the next section, we will discuss the model and an architecture
for such a system.

4 A Model for Group and Session Management

From the requirements listed in the last section, several conclusions can be
drawn. One is that a permanent database is required, which can store informa-
tion about entities which are not permanently active in the context of a group
communication framework, ie users and user groups. Another requirement is
that certain events regarding a user of the group and session management sys-
tem must be communicated to the user, and this must be initiated by the group
and session management system. Therefore, it is appropriate to model the con-
nection between the user and the group and session management system as a
permanent connection during the lifetime of a user's work with a group commu-
nication framework. However, the data path of the user's application is entirely
independent from the group and session management system, which distributes
data with its own mechanisms. The resulting architecture of such a model is de-
picted in Figure 4, with GMS being the group and session management system.

GSA

GSA

GSA GSA

GUA

Application

Data

GUA

Application

GUA

Application

Data

Data

GSP

GSP

GAP

GMS

GAP

GAP

Fig. 4. GMS architecture



In this �gure, GAP is the GMS access protocol, which is used as an entry
point to GMS. GSP is the GMS system protocol which de�nes how data is ex-
changed inside the GMS. GAP is described in more detail in Section 4.1, GSP
in Section 4.2. The main architectural components of GMS are GMS user agents
(GUA) and GMS system agents (GSA), which will be described in Sections 5.1
and 5.2 respectively. While GUAs are included in group communication frame-
works using GMS, GSAs are stand-alone components which, in their entirety,
make up the GMS database. They are organized into domains, which are hier-
archically ordered. The GMS architecture looks very similar to well-known di-
rectory services such as the Internet Domain Name System (DNS) [18] or ITU's
X.500 directory service [14], but there are some notable di�erences.

DNS is based on the assumption that a simple lookup is su�cient (which is
true for the purpose of DNS entries), while GMS requires a permanent connection
between a user and the system because of the noti�cations which have to be
delivered to GMS users. Furthermore, DNS is (for the normal user) read-only
and anonymous, while GMS entries need to be modi�able and users normally
are identi�ed (and authenticated, if necessary). Therefore, the main di�erence
between DNS and GMS is that DNS lookups are very short connections, while
GMS GAP connections exist over the lifetime of a data connection, and that the
typical GMS user has an identity which can be used for additional functionality,
while a DNS user has anonymous access to DNS data.

The X.500 model is closer to the requirements of GMS than DNS. In fact, we
�rst considered to use X.500 as a base for GMS, which then would have consisted
simply of a set of X.500 object de�nitions and a software component granting
access to these objects. However, there are some drawbacks with X.500, the two
main disadvantages being the non-existence of DSA-initiated operations, which
are needed for the noti�cations which are part of the GMS model, and the slow
propagation of information inside X.500. Furthermore, X.500 requires the OSI
stack of communication protocols, which does not �t our requirement to be able
to use the access protocol over di�erent transport infrastructures. We therefore
decided not to use X.500 but to de�ne a distributed directory service which
exactly �ts the needs of the GMS model. The main di�erence between X.500
and GMS is that GSAs are able to become active in GAP connections (instead
of the purely reactive DSAs), and that GSP is designed for faster propagation
of information than DSP. It is also easily possible to use GAP over a variety of
transport protocols, provided they o�er a reliable, connection-oriented service.

The most important de�nitions for GMS are the data types which are used
inside the system. Because the design goal was to create a versatile model which
can be used be a wide variety of distributed applications, the following object
types has been de�ned. A complete de�nition of the object types can be found
in the speci�cation of GAP [23].

{ User. A user is a person or entity using GMS. Each user has an identity
(a name) and one or more ways of authenticating himself. This authentica-
tion may vary from no authentication at all (ie it is su�cient to use the right
name) to sophisticated, hardware-oriented authentication schemes with mul-



tiple challenge iterations. A user object contains information about a user,
such as his real world name, a description, his email address, and a list of
the bindings of a user, ie the list of active GMS connections a user has.

{ Group. GMS groups may consist of users and/or groups, depending on the
de�nition of the group. Joining and leaving a group depends on the group's
join policy and authentication requirements. Joins and leaves may be noti-
�ed to a group's managers and/or members. Each group object may contain
a group's real world name (eg the name of a company or a company's de-
partment), a description of the group, a group's mail address, and the access
rights, which determine who is authorized to modify the attributes of the
group.

{ Flow Template. For several applications and communication platforms it is
useful to have a number of prede�ned possibilities to set up connections. Flow
templates contain information about data types which may be carried by a
ow of that type, the necessary transport service, data which is needed to
set up a ow of that type, information about uni- or bidirectional services,
and a set of QoS parameters, which can be used to give a description of
the ow template. However, ows may also be created without using a ow
template.

{ Flow. A ow is one connection for data transport. Depending on the ow's
de�nition, it is either uni- or bidirectional, has a limited number of senders
and/or receivers, and a renegotiation policy, which determines who is autho-
rized to initiate QoS renegotiations for that ow. Flows are created when a
session is created and are deleted when a session is deleted. Joining a ow
takes place when a session is joined, and a ow is left when the session of a
ow is left.

{ Session. The main metaphor for group communication is a session. Each ses-
sion is used to logically group a number of ows and to create an abstraction
for management, authorization, and admission control for ows. The ows
of a session are created when the session is created and deleted when the
session is deleted. When joining a session, not all ows of the sessions must
be joined, so users can choose which ows to use. Sessions may have ap-
plication speci�c information, which consists of an application identi�cation
and application speci�c data, which may be interpreted by the application.
Furthermore, the duration of a session may be given with either start or
end times or both. In addition, it is possible to specify which authentication
level a user must have to successfully join a session (provided he is autho-
rized su�ciently). Authorization is based on the session's join policy which
may be open (everyone may join), group (only members of the group asso-
ciated with the session may join), or managed, which may be either relative
(a given percentage of managers must con�rm) or absolute (a given number
of managers must con�rm).

{ Certi�cate. Applications with special security requirements may have the
need to store certi�cates inside the GMS, which are used for checking data
identity and integrity. Certi�cates include the type (which may be a prede-



�ned type or any other type), the name type (which also has a number of
prede�ned values and the possibility to de�ne own types), the certi�cate's
validity, a simple name, and data and signatures, which contain the infor-
mations which is necessary for checking the data.

In the context of distributed multimedia applications, another important
issue is the one of Quality-of-Service (QoS) Parameters. GMS has a very general
concept of QoS speci�cation and usage, which ranges from no QoS (which would
be used for TCP/IP) up to a arbitrary number of QoS parameters which can
also be renegotiated. All participants of a ow are noti�ed of a renegotiation,
so that is possible for them to take appropriate actions, such as changing the
protocol parameters to adapt to the new QoS values.

GMS has four QoS parameter types, which are unsorted values, sorted values,
integer values, and real values. Unsorted Values are a set of prede�ned values,
which are not in any particular order (an example for this is a QoS parameter
which de�nes a coding algorithm, where it is not possible to arrange the di�erent
algorithms in any order). Sorted Values are also prede�ned values, but these
values are given as a sequence, because it is possible to arrange them in an order
(an example for this type of QoS parameter is the selection of a error detection
algorithm, which may be given as a sequence of none, CRC8, CRC16, and some
more sophisticated algorithms). Integer and real values represent the two basic
types of numbers which may be used (which may be used for throughput or error
probability numbers).

range for joining receivers

value for joining senders

defaultweakest limit
renegotiation weakest limit renegotiation strongest limit

range for renegotiations

Fig. 5. Values and ranges for QoS parameters

Each ow's QoS parameters are de�ned by their name and type and at least
a default value (which is the value used for joining participants if no local mod-
i�cations are requested). Optionally, a weakest limit for joining the ow and
strongest and weakest limits for renegotiations may be de�ned. For unordered
values QoS parameters, there is no order of the values, therefore the join and
renegotiation values must be given as sets of values. The concept of QoS param-
eter values and ranges is shown in Figure 5. When joining a session, the QoS
parameters being used are taken from the ows' QoS de�nitions. According to
the user's requirements, a weaker value than the default may be selected, as long



as it does not fall short of the weakest limit for joining the ow. However, this
is only possible for receivers, senders must always join with the QoS value given
as the default value.

In the following sections, we will describe the two protocols of GMS, namely
GAP and GSP, as shown in Figure 4. These protocols, together with the object
types described earlier in this section, form the main part of the GMS model.

4.1 GMS Access Protocol (GAP)

The GMS access protocol (GAP) is used by GMS user agents to connect to
the GMS. While a large part of the protocol deals with operations initiated by
the GUA, there are also some messages which are initiated by the GSA the
GUA is connected to. Basically, GAP requires a reliable, connection-oriented
transport infrastructure. Ideally, this transport infrastructure would also allow
for secure communications, but is is up to the GMS user to decide whether he
requires a secure channel or not. However, the security mechanisms of GMS
may be compromised if no secure GAP connection is being used. The prototype
implementation of GAP is based on TCP/IP. However, this requires the group
communication framework (the GUA is part of) to use TCP/IP, which could be
a limitation.

If a new transport protocol for GAP should be used, both the GUA's net-
work adaptation layer (as described in Section 5.1) and the GSA's GAP server
component (as described in Section 5.2) had to be extended to support the new
protocol. This way, one could easily think of a multi-protocol GSA, which for
example would allow TCP/IP based as well as ISO/TP4 based GUAs to con-
nect to it. The only limitation is that a reliable, connection-oriented protocol is
required. However, it should always be kept in mind that data connections and
GMS (ie GAP) connections are completely independent (as shown in Figure 4),
so it is not always necessary to adapt GAP to a new transport protocol.

GAP itself can be split into three phases, each of them dealing with di�erent
aspects of the GUA-GSA interaction. A detailed speci�cation of GAP can be
found in [23]. The three phases of GAP are as follows.

{ GUA binding phase. This is the initial phase of GAP, which is entered di-
rectly after a GUA has connected to a GSA. In this phase, the GUA has to
bind to the GMS, ie it has to register with the GSA. It sends GAP version
information and gets as a reply the maximum number of users supported
by the GSA3. Furthermore, the domain name of the GSA is also sent to the
GUA.

{ User authentication phase. After the GUA has bound to the GMS, it enters
the GUA bound state and is now ready to bind users. User authentication
in GAP ranges from none to complex authentication schemes which require

3 It is possible that such a maximum does not exist when binding to the GMS (eg

because the maximum is evaluated dynamically), in this case no such number is

given.



multiple data exchanged between the GSA and the GUA (ie the user)4.
One common way of authentication is the Unix password scheme which
authenticates a user by simply checking a password. However, as a result of
the user authentication phase, the user is either successfully authenticated
and thus bound to the GMS, or the binding attempt failed.

{ User bound phase. Only a user who previously bound to the GMS can use
the majority5 of GAP commands. These are commands to directly access
the GMS objects (such as create, modify, or delete an object), or commands
which implicitly modify objects and relations, such as join and leave for
groups and sessions. The authorization to perform these commands is de-
termined by certain policies de�ned within the objects and the identity of
the user6. Furthermore, in this phase it is possible that noti�cations about
certain events are sent to the GUA.

It is important to notice that there are two possibilities to bind multiple
users to the GMS. The �rst possibility is that every user uses his own GUA,
which then opens a GAP connection to the GSA. However, this approach may
fail if only one group communication framework is running on a machine which
is used by several users. In this case, it is possible that several users bind to
the GMS using the same GUA. GAP has been designed in a way that multiple
users do not interfere when using the same GAP connection. However, because
of this design, it is possible that one user is in the user authentication phase
while another user is in the user bound phase. For this reason, GAP is speci�ed
using parallel state machines. A more detailed description of this design can be
found in the GAP speci�cation [23].

4.2 GMS System Protocol (GSP)

The GMS system protocol (GSP) is used by GMS system agents to communicate.
This communication is necessary to exchange data and to exchange information
about the con�guration of GMS. A detailed description of GSP can be found in
the GSP speci�cation [24].

One of the main points about GSP is that it is a multicast-based protocol. We
use the reliable, FIFO ordered (according to the de�nitions given by Hadzilacos
and Toueg [8]) multicast protocol described by Bauer and Stiller [2] as base for
GSP. The usage of a multicast based protocol is very e�cient because GSAs are

4 One example for a class of authentication schemes which require this type of data

transfer are challenge-response schemes, which depend on a sequence of challenges

sent by the server to which the client has to respond. Only if all challenges are

answered correctly, the authentication is successful.
5 Exceptions are the commands of the two other phases, which form a small subset of

GAP commands.
6 Because users may be bound to the GMS using more or less strong authentication

mechanisms, GMS includes the concept of authentication requirements, which de�ne

for each object an authentication level by which a user must at least be bound to

perform any operation regarding this object



grouped into hierarchically ordered domains, and all GSAs of a domain can be
reached with a single multicast address. This way, we can use true multicast-
ing as opposed to the multicasting mode of the X.500 directory as described in
X.518 [15]. We use multicast as the method for distributing requests to all GSAs
of a domain. However, when replying to a request, the replying GSA uses uni-
cast, thus only sending the reply to the originator of the request. This approach
minimizes the network load caused by the interacting GSAs.

One concept used for GSP is the one of tokens. Tokens exist inside a domain
and are used to determine which GSA inside a domain in authorized to perform
certain operations. The three token types of GSP are as follows, where each
token exists for every domain inside the GMS.

{ Propagation of requests. Because it is often necessary to propagate domain
name resolution requests (which are described in detail later in this section)
either up or down the domain hierarchy, there has to be one GSA inside
each domain which is responsible for this task. Whether this role is �xed
or moved from one GSA of a domain to another using some kind of load
balancing strategy, is outside the scope of the GSP speci�cation.

{ Object creation. Object creation is also handled by multicast requests. Be-
cause only one GSA is allowed to actually create a new object when requested
(otherwise duplicates would be created), the task of object creation also de-
pends on a token. This token may be rotated among a domain's GSAs using
a strategy which takes into account the storage place available on each GSA.

{ Forwarding and processing of queries. Queries are the most processing inten-
sive operations inside the GMS because it is necessary to search for objects
matching a given pattern. Queries must either be forwarded or processed
inside a domain by a dedicated GSA, which collects the results and sends
them back to the originator of the query. This role is also represented by a
token and may also be assigned dynamically according to some strategy.

Because tokens may get lost (eg when the machine of the token holder
crashes) or may be duplicated (eg if the network has been temporarily parti-
tioned), it is always possible for a GSA to request a token renegotiation for a
domain. For this task, each GSA implements a simple �nite state machine which
has the three states monitoring, competing, and tokenholding. Monitoring and
tokenholding are two stable states, indicating a GSA which does not have a token
respectively does have a token. When a token renegotiation request is sent to
the domain, all GSAs enter the competing state. By replying with claim token
messages, all GSAs try to get the token. Based on the content of the claim to-
ken messages, each GSA can decide which GSA will become the token holder.
This GSA then enters the tokenholding state, while all other GSAs will become
monitoring. The token renegotiation process is initiated by a GSA requesting a
service from a domain's GSAs and either getting no reply (ie the token was lost)
or more than one reply (ie the token was duplicated) after a prede�ned period
of time.

The basic process of operations being carried out within GSP can be sepa-
rated into two phases. The �rst phase is the domain name resolution. As men-



tioned before, domains are hierarchically ordered. The GSAs of each domain
only know the address of their directly superior domain and the addresses of
all directly inferior domains. There is no such thing as the top-level domain but
a set of top-level domains, where each top-level domain knows the addresses of
all other top-level domains and the addresses of all directly inferior domains.
Whenever a GSA wants to send a request to another domain, it �rst checks
whether it has cached the address after a previous request. If not, the domain
name resolution phase is started. Depending on whether the required domain
is hierarchically above the requesting GSA or not (which can be decided based
on the domain's name), the domain name resolution request is either sent to
the superior domain or to the appropriate inferior domain. In this domain, the
GSA holding the propagation of requests token will forward the domain name
resolution request to the next domain and reply with a domain name resolu-
tion pending message to the requesting GSA. If this pending message (or more
than one) is not received after a certain timeout, the requesting GSA will send
a token init request to the domain, initiating a token renegotiation for this do-
main (as discussed in the previous paragraph). This process, which is shown in
Figure 6, continues until the address of the requested domain is found, which is
then directly sent back to the initiating GSA.

GSA3
GSA

GSA

GSA2
GSA

GSA
GSA

GSA

GSA
GSA

GSA

GSA

GSA

GSA

Domain hierarchy
Multicast
Unicast

GSA

GSA with
propagation token

GSA
GSA

GSA4

GSA1
GSA

GSA

Top-level domains

Fig. 6. GSP domain name resolution



In this �gure, GSA1 is the GSA initiating the domain name resolution. GSA2,
GSA3, and GSA4 each reply with a domain name resolution pending message to
the GSA which sent the request to the domain using its multicast address. GSA4,
which �nally knows the address of the domain to which GSA1 wants to send a
request, directly responds to GSA1 with the domain's address. If such a reply
is not received after a timeout, the domain name resolution process is initiated
again. Both this timeout and the timeout which is used to send the token init
request must be chosen carefully to �nd the optimal balance between unnecessary
repetitions respectively token renegotiations and too long idle periods. However,
since we assume that the domain hierarchy will be relatively at (eg as deep
as the DNS domain name space, with a similar organization), there are not too
many GSAs involved in the domain name resolution process.

Once a GSA has resolved the address to which a request must be sent (ei-
ther by the process described above or from a cache, which contains addresses
accessed before), the operation itself can be carried out. This is done by sending
the request containing the operation to the domain. Depending on the operation,
the GSAs of the requested domain behave di�erently. For example, when sending
a modify request, the GSA storing the object will be the only one responding
to the request, while all other GSAs of the domain silently ignore the request.
This is possible because it is clear that only the GSA storing the object in its
local database can process the request. On the other hand, if a create request
is processed, �rst an object present request is sent to all GSAs of the domain.
All GSAs of the domain send a reply, indicating whether they hold the object

creation token or not7. This is necessary because the requesting GSA must be
able to detect whether there is exactly one token holder. If all GSAs8 reply with
an indication that they do not hold the token (or if more than one token holder is
answering), it can be concluded that a new token holder must be found and the
GSA sends a token renegotiation request to the domain. Otherwise, the create
request is directly sent (using unicast) to the GSA which indicated that it has
the object creation token.

Additional protocol mechanisms exist for adding GSAs to and removing
GSAs from a domain. Normally, it is assumed that a GSA is a permanently
running process, but even then occasional interrupts (eg if the machine a GSA
runs on is stopped) can occur. If a GSA is started, it must �rst join the multicast
group which is assigned to the domain it is joining. Then the GSA has to send
a join domain request to this address, and all GSAs of the domain reply to this
request. The �rst reply to that request, sent by any GSA inside the domain,
concludes the start up procedure and the GSA becomes part of the domain. The
remaining join domain replies can be ignored. Each GSA has a local table of

7 This procedure is feasible under the assumption that the number of GSAs per do-

main is moderate. Again, we consider an architecture similar to that of DNS, where

typically each domain is served by very few servers. If the number of GSAs would

be much greater than 10, the approach taken would have been prohibitive.
8 The fact that all GSAs have replied can be concluded from the total number of GSAs

in the domain, which is contained in every reply sent by a GSA.



which contain a list of triples containing an unique GSA identi�cation, a ag
indicating whether it is currently active, and a version number. This table is
updated if a join domain request is received. This table is sent periodically to
the domain, so that inconsistencies �nally disappear. If a GSA wants to leave a
domain, it sends a leave domain request to the domain, waits for the �rst leave
domain reply, and then leaves the multicast group. The remaining GSAs update
their internal tables according to the leave domain request. These tables are also
updated if di�erences are detected between the periodically received version and
the local version.

5 Implementation

In the previous section, we described the model and an architecture for the
group and session management system GMS. In this section, we will briey
describe the implementation of our GMS prototype. At the time of writing, the
GUA implementation has �nished and the GSA implementation is still under
way. As implementation base we use Sun workstations running Solaris 2.5, the
Sun version of Unix. As tools we used StateMate, a commercial software for
designing, simulating, and generating code for �nite state machines, and snacc
by Sample and Neufeld [20, 21], a public domain software for generating code for
ASN.1 coding and decoding. ASN.1 coding and decoding software was required
because we use ASN.1 [12] as notation language for the syntax in our protocol
speci�cations.

5.1 GUA

The implementation of the GMS user agent, which is, together with a more de-
tailed description of the concepts, described in [25], focuses on two aspects, the
�rst being the easy adaptability of the GUA code to another transport infras-
tructure. We therefore used only abstract procedures for accessing the transport
infrastructure and created a network adaptation layer which can easily be mod-
i�ed as long as the new transport infrastructure being used provides reliable,
connection-oriented communications. This design can be seen in Figure 7.

The other important aspect is the one of control ows. Because normally the
GUA can get input from both the user (at the programming interface layer) and
the network (at the network adaptation layer), and we did not want to delay
processing of one direction until the other direction has been handled, we use a
multi-threaded design, where one thread is responsible for processing requests
from the programming interface layer, while the other thread processes requests
coming from the network adaptation layer. The reason why we decided to use
this solution is because, as mentioned in Section 4.1, it is possible that multiple
users use one GUA, and it is important to make sure that no user is able to
disturb other users' work with the GMS.

The implementation of the GUA component consists of seven main building
blocks. Network adaptation and programming interface are cleanly separated



Parameter + State
Checking

State Machine
Management

Packet Coding
and Decoding

Finite State
Machine

ASN.1 Encoding
and Decoding

Network Adaptation

Programming Interface

W
ri

tte
n 

C
od

e

G
en

er
at

ed
 C

od
e

Fig. 7. GMS user agent (GUA) design

to make the code easily adaptable to di�erent environments. Furthermore, we
use generated code for the GUAs �nite state machines and the encoding and
decoding of GAP PDUs. This code is controlled by three components, which are
responsible for checking parameters and the state of the GUA's state machine,
the state machine management (ie performing state transitions and executing
the appropriate actions), and the marshaling and unmarshaling of arguments.

5.2 GSA

The GSA implementation consists of three main building blocks, which are the
implementation of the two protocols GAP and GSP, and the internal logic, which
is responsible for performing the actions which are requested by either a GUA
or a GSA. It is also possible to have GSAs which do not provide GAP access.
In this case, the building block containing the GAP functionality is omitted.
This architecture is depicted in Figure 8, which goes into a little more detail. In
this �gure, each labeled block represents a process, while the MQ components
are Unix message queues, providing a convenient interprocess communication
mechanism.

The main component of the GSA is the GSA manager which is the process
started �rst during initialization. If the GSA supports GAP, the GSA manager
starts the GAP server, which is then able to accept connect requests from GUAs.
The GAP server currently uses TCP/IP, but it could be easily extended to sup-
port other transport protocols. The GSA manager also starts multicast processes
for sending to and receiving from multicast groups. These processes implement
the reliable multicast protocol mentioned in Section 4.2. Furthermore, the GSA
manager starts a unicast receiver process which handles all incoming requests
for the GSA. These are replies to multicast requests. The multicast modules are
implemented on top of UDP/IP multicast, while the unicast receiver is based on



GSA

Database

Manager
MQMQ

GSA
User

User
GSA

GSA
User

MQ

GAP
Server MC Receiver

UC Receiver

MC Sender

T
C

P/
IP

GAP GSP

IP
 m

ul
tic

as
t

T
C

P/
IP

Fig. 8. GMS system agent (GSA) design

TCP/IP9. Finally, the GSA manager is the process which has direct access to
the local database.

The GAP server handles the GUA binding phase described in Section 4.1. If a
GUA initiates the user authentication phase, the GAP server dynamically starts
a GSA user process which is then responsible for handling this users authenti-
cation and, if the authentication has been successful, also the user bound phase.
The GSA user process terminates if the user unbinds, if the user's authentication
failed or if the GUA forces an unbind (ie the GAP connection is terminating).
Consequently, for each user bound to the GSA, a GSA user process exists which
handles the users requests and delivers any results or noti�cations to the user.

The GSA manager has the role of the central entity in the GSA design. It
accepts all incoming GSP PDUs and processes them according to their content.
If a PDU is the result of a operation requested by a GSA user process, it is
forwarded to this process. If an incoming GSP PDU requires the GSA to per-
form some actions, it either performs the appropriate actions itself or it starts a
separate process (not shown in the �gure) which lives as long as the operation is
being processed. The GSA manager also has direct access to the database, where
all local objects and relations are stored. Currently we use the standard Unix
ndbm package10 for managing the database. This package implements a simple
storage for key/data pairs, in our case the pairs consist of an object's name as
the key and the object's ASN.1 representation as data.

9 Because we use the unicast connection only for sending a reply to the requesting

GSA, a transactional variant of TCP such as T/TCP described by Braden [4] would

be preferable. However, at the moment we use standard TCP, thus including the

overhead of the rather expensive TCP connection establishment and the problem

with both ends going to the TIME-WAIT state after closing the connection.
10 The ndbm format is the new format for Unix databases which replaces the older

dbm format and library.



5.3 Implementation results

The implementation described in the previous sections has been tested in vari-
ous ways. The majority of test has been performed as load testing, where a huge
load of requests was produced and the behavior of the system has been observed.
After these tests (which included a number of test domains with GSAs in the
local network and internationally distributed), all timeouts have been adjusted
carefully to �nd the optimal balance between unnecessary repetitions and un-
necessary wait periods. Most operations now have �ve or ten seconds timeouts,
assuming that due to the usage of a reliable multicast protocol (which already
has internal timers for keep-alive packets), timeouts on GSP level should occur
only rarely.

Analyses of the GSA code showed that about 70% of the time spent is used
for program logic, 30% is used for database accesses, and only 0.3% are used
for coding and decoding ASN.1 data. This was a surprise to us, since the code
generated by the Snacc ASN.1 to C/C++ compiler is huge (120000 lines of
generated C++ code as opposed to 20000 written lines of C++ code for the
various GSA processes). However, this still causes problems, because although
the CPU load caused by a GSA running on a system is moderate, due to the size
of the processes (most of them including coding/decoding routines), a system
running a GSA is heavily loaded by swapping processes from and to memory.

One important point when discussing the performance of a distributed di-
rectory service is the scalability of the architecture. GMS can be scaled in three
dimensions, which are discussed in the following list.

{ Number of users per GSA. The current GSA implementation is obviously not
suited to support a larger number of users, since every user is represented
by a process (as shown in �gure 8). However, the resources required for each
user could be reduced to a few table entries if the GSA code was designed
appropriately. Thus, the number of users per GSA could be fairly big (in
the magnitude of a few hundreds) if the GSA implementation was carefully
designed.

{ Number of GSAs per domain. The number of GSAs per domain also is the
number of GSAs receiving all multicast requests to this domain and replying
to them, if necessary. Therefore, the number of GSAs per domain should be
kept fairly small (in the magnitude of ten) to avoid the well-known implosion
problem. This imposes no problem, since GSAs are meant to be central
services which are remotely accessed using the GMS access protocol (GAP).

{ Number of domains. The number of domains can be scaled in two ways. Ex-
tending the domain hierarchy horizontally does not cause any change in GSP
performance, since domain name resolution is not a�ected by the number of
subdomains of a domain. Extending the domain hierarchy vertically (ie in-
troducing new levels of subdomains) inuences the domain name resolution
linearly, since the domain name resolution requests have to be propagated
through more domains. Requests to domains are not inuenced at all, since
they are directly addressed to the domain. Furthermore, when using caching



in the GSA instead of performing a domain name resolution for every request,
the e�ect of extending the domain hierarchy vertically could be minimized.
Hence, the number of domains does not inuence GMS in a way which could
cause performance problems.

Consequently, GMS is able to be used in a large scale, provided the number
of GSAs per domain is kept reasonably small (which is also preferable from a
management point of view). We therefore believe that the approach to group
and session management presented in this paper not only makes group commu-
nication platforms more exible, but also can be used in a global scale.

6 Conclusions

In this paper we describe a group and session management system (GMS) for
distributed multimedia applications. The GMS model assumes that a special
component, a GMS user agent (GUA), is included into group communication
frameworks which want to incorporate GMS functionality. This component then
becomes an integral part of the group communication framework, ie it is not
possible for application programmers to access the GUA directly. This approach
has been chosen because a number of operations (especially the join session
operation, which joins the requester to a number of data ows) can not be
completely processed inside the GUA, but also need the group communication
framework (eg for performing an admission control which needs to check whether
the local and network resources are su�cient to join a session). The exchange of
user data and of GMS access protocol (GAP) data is performed independently,
so it is possible to use di�erent transport infrastructures for data exchange and
GAP connectivity.

Furthermore, the GMS data model is designed in a way that it allows the
modeling of users, groups, and sessions in an abstract way which is suitable
for di�erent group communication frameworks. It is therefore possible to eas-
ily integrate GMS functionality into group communication frameworks, the two
main issues being the abstract data model of GMS, and the separation of data
and control information (GAP). The abstract data model can be used to map
a framework's internal model of connections and connection handling to the
abstractions used by GMS, which is then accessible to all GMS users, even if
they are using di�erent group communication frameworks. The separation of
data and control information provides the framework designers with the oppor-
tunity to separate data exchange and management information, which can even
be transferred using di�erent transport infrastructures.

In addition to the standard GMS usage, where a GUA is integrated into
a group communication framework, we are also implementing an application
which only uses the GUA for communications and consequently can not be
used for data transfer. This application could serve the same purposes than
the Internet's mbone session directory (as implemented by the sd/sdr tools),
but with a richer functionality (such as authentication, authorization, and the



ability to use more than one group communications framework). At the time of
writing, this application is in the implementation phase.

The GMS architecture is that of a distributed directory service. The dis-
tributed components are GMS system agents, communicating via the GMS sys-
tem protocol (GSP). GSAs are grouped into hierarchically organized domains,
which reect organizational structures in the real world. GSP is a multicast pro-
tocol, with the unit of addressing being the domain. The protocol design is based
on the assumption that domain are relatively small with respect to the number
of GSAs (not much more than 10 GSAs in one domain), and that the hierarchy
is relatively at (not much more than 5 levels). Based on observations of the
current structure of DNS and X.500, we believe that these assumptions are real-
istic. We will start an experimental GMS as soon as the GSA implementation is
�nished, which will give us the opportunity to adjust the timeout values (which
are crucial for the proper operation of GSP) and to evaluate an internationally
distributed version of GMS.

The authors would like to thank Daniel Bauer and Gerhard Nigg for providing
us with the software for the reliable multicast protocol GSP is based on. We also
would like to thank Murali Nanduri who implemented most of the GUA software.

References

1. Michael Altenhofen, J�urgen Dittrich, Rainer Hammerschmidt, Thomas K�appner,

Carsten Kruschel, Ansgar K�uckes, and Thomas Steinig. The BERKOM Multime-

dia Collaboration Service. In Proceedings of ACM Multimedia 93, pages 457{463,

Anaheim, California, 1993. ACM Press.

2. Daniel Bauer and Burkhard Stiller. An Error-Control Scheme for a Multicast

Protocol Based on Round-Trip Time Calculations. In Proceedings of the 21st Con-

ference on Local Computer Networks, Minneapolis, October 1996.

3. Daniel Bauer, Erik Wilde, and Bernhard Plattner. Design Considerations for a

Multicast Communication Framework. In Proceedings of the Tenth Annual Work-

shop on Computer Communications, Eastsound, Washington, September 1995.

4. R. Braden. T/TCP { TCP Extensions for Transactions Functional Speci�cation.

Internet RFC 1644, July 1994.

5. C. A. Ellis, S. J. Gibbs, and G. L. Rein. Groupware { Some Issues and Experiences.

Communications of the ACM, 34(1):38{58, 1991.

6. Hans Eriksson. MBone: The Multicast Backbone. Communications of the ACM,

37(8):54{60, 1994.

7. Thomas Gutekunst, Thomas Schmidt, G�unter Schulze, Jean Schweitzer, and

Michael Weber. A Distributed Multimedia Joint Viewing and Tele-Operation

Service for Heterogeneous Workstation Environments. In Wolfgang E�elsberg

and Kurt Rothermel, editors, GI/ITG Arbeitstre�en Verteilte Multimedia-Systeme,

number 5 in Praxis, Information und Kommunikation, pages 145{159, Stuttgart,

Germany, February 1993. K. G. Saur.

8. Vassos Hadzilacos and Sam Toueg. Fault-Tolerant Broadcasts and Related Prob-

lems. In Sape Mullender, editor, Distributed Systems, chapter 5, pages 97{145.

ACM Press, New York, second edition, 1993.

9. M. Handley, J. Crowcroft, and C. Bormann. The Internet Multimedia Conferenc-

ing Architecture. Internet Draft, MMUSIC Working Group, February 1996.



10. Mark Handley and Van Jacobson. SDP: Session Description Protocol. Internet

Draft, MMUSIC Working Group, November 1995.

11. Lutz Henckel. Multipeer Connection-mode Transport Service De�nition based on

the Group Communication Framework. Technical report, GMD FOKUS, Berlin,

June 1994.

12. International Organization for Standardization. Information processing systems {

Open Systems Interconnection (OSI) { Speci�cation of Abstract Syntax Notation

One (ASN.1). ISO/IS 8824, 1990.

13. International Telecommunication Union. Data Protocols for Multimedia Confer-

encing. Draft Recommendation T.120, 1995.

14. International Telecommunication Union. The Directory { Overview of Concepts,

Models and Services. Recommendation X.500, March 1995.

15. International Telecommunication Union. The Directory { Procedures for dis-

tributed operations. Recommendation X.518, March 1995.

16. T. Kirsche, R. Lenz, H. L�uhrsen, K. Meyer-Wegener, H. Wedekind, M. Bever,

U. Sch�a�er, and C. Schottm�uller. Communication support for cooperative work.

Computer Communications, 16(9):594{602, 1993.

17. Andreas Mauthe, Geo� Coulson, David Hutchison, and Silvester Namuye.

Group Support in Multimedia Communications Systems. In D. Hutchison,

H. Christiansen, G. Coulson, and A. Danthine, editors, Teleservices and Multime-

dia Communications { Proceedings of the Second COST 237 Workshop, volume

1052 of Lecture Notes in Computer Science, pages 1{18, Copenhagen, Denmark,

November 1995. Springer-Verlag.

18. P. Mockapetris. Domain Names { Concepts and Facilities. Internet RFC 1034,

November 1987.

19. T. Rodden, J. A. Mariani, and G. Blair. Supporting Cooperative Applications.

Computer Supported Cooperative Work, 1(1{2):41{67, 1992.

20. Michael Sample. Snacc 1.1: A High Performance ASN.1 to C/C++ Compiler.

Technical report, University of British Columbia, Vancouver, July 1993.

21. Michael Sample and Gerald Neufeld. Implementing E�cient Encoders and De-

coders For Network Data Representations. In Proceedings of the IEEE INFOCOM

'93 Conference on Computer Communications, pages 1144{1153, San Francisco,

1993. IEEE Computer Society Press.

22. Henning Schulzrinne. Simple Conference Invitation Protocol. Internet Draft,

MMUSIC Working Group, February 1996.

23. Erik Wilde. Speci�cation of GMS Access Protocol (GAP) Version 1.0. Techni-

cal Report TIK-Report No. 15, Computer Engineering and Networks Laboratory,

Swiss Federal Institute of Technology, Z�urich, March 1996.

24. Erik Wilde. Speci�cation of GMS System Protocol (GSP) Version 1.0. Techni-

cal Report TIK-Report No. 19, Computer Engineering and Networks Laboratory,

Swiss Federal Institute of Technology, Z�urich, September 1996.

25. Erik Wilde, Murali Nanduri, and Bernhard Plattner. A Transport-Independent

Component for a Group and Session Management Service in Group Communi-

cations Platforms. In P. Delogne, D. Hutchison, B. Macq, and J.-J. Quisquater,

editors, Proceedings of the European Conference on Multimedia Applications, Ser-

vices and Techniques, pages 409{425, Louvain-la-Neuve, Belgium, May 1996.

26. Neil Williams and Gordon S. Blair. Distributed multimedia applications: A review.

Computer Communications, 17(2):119{132, 1994.


