Abstract
We use formal semantic analysis to generate intuitive confidence that the Heyting Calculus is an appropriate system of deduction for constructive reasoning. Well-known modal semantic formalisms have been defined by Kripke and Beth, but these have no formal concepts corresponding to constructions, and shed little intuitive light on the meanings of formulae. In particular, the well-known completeness proofs for these semantics do not generate confidence in the sufficiency of the Heyting Calculus, since we have no reason to believe that every intuitively constructive truth is valid in the formal semantics.
Läuchli has proved completeness for a realizability semantics with formal concepts analogous to constructions, but the analogy is inherently inexact. We argue that, in spite of this inexactness, every intuitively constructive truth is valid in Läuchli semantics, and therefore the Heyting Calculus is powerful enough to prove all constructive truths. Our argument is based on the postulate that a uniformly constructible object must be communicable in spite of imprecision in our language, and we show how the permutations in Läuchli's semantics represent conceivable mprecision in a language, independently of the particular structure of the language.
We look at some of the details of a generalization of Läuchli's proof of completeness for the propositional part of the Heyting Calculus, in order to expose the required model constructions and the constructive content of the result. We discuss the reasons why Läuchli's completeness results on the predicate calculus are not constructive.
Preview
Unable to display preview. Download preview PDF.
References
M. J. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, 1980.
E. W. Beth. The Foundations of Mathematics, A Study in the Philosophy of Science. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, 1959.
K. B. Bruce, A. R. Meyer, and J. C. Mitchell. The semantics of second-order lambda calculus. Information and Computation, 85(1):76–134, 1990. Reprinted in Logical Foundations of Functional Programming, ed. G. Huet, Addison-Wesley (1990) 213–273.
A. Church. An unsolvable problem of elementary number theory. American Journal of Mathematics, 58:345–363, 1936.
S. A. Cook. The complexity of theoremproving procedures. In 3rd Annual ACM Symposium on Theory of Computing, pages 151–158. Association for Computing Machinery, 1971.
H. B. Curry and R. Feys. Combinatory Logic Volume I. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, 1958.
M. A. E. Dummett. Elements of Intuitionism. Oxford University Press, 1977.
R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic Logic, 1991. To appear.
S. Feferman. Constructive theories of functions and classes. In M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium 78, pages 159–224. North-Holland, 1979. Proceedings of the colloquium held in Mons, August 1978.
M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba. Reasoning with continuations. In Proceedings of the First Annual Symposium on Logic in Computer Science, pages 131–141, 1986.
J. E. Fenstad, editor. Selected Works in Logic. Universitetsforlaget, 1970.
M. C. Fitting. Intuitionistic Logic, Model Theory, and Forcing. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, London, 1969.
M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman, 1979.
G. Gentzen. Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie. Mathematische Annalen, 119:140–161, 1943.
J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1989.
Jean-Yves Girard. Une extension de l'interprétation de Gödel à l'analysis, et son application à l'élimination des coupures dans l'analysis et la théorie des types. In J. E. Fenstad, editor, Proceedings 2nd Scandinavian Logic Symposium. North-Holland, 1971.
Leon Henkin. Completeness in the theory of types. The Journal of Symbolic Logic, 15:81–91, 1950.
A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Academie der Wissenschaften, Physikalisch-Matematische Klasse, pages 42–56, 1930.
A. Heyting. Intuitionism, an introduction. North-Holland, 1971.
W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press, 1980.
J. Hudelmaier. Bounds for Cut Elimination in Intuitionistic Logic. PhD thesis, Universität Tübingen, 1989.
P. T. Johnstone. Conditions related to de Morgan's law. In M. P. Fourman, C. J. Mulvey, and D. S. Scott, editors, Applications of Sheaves. Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, pages 479–491. Springer Verlag, 1979. Lecture Notes in Mathematics 753.
S. C. Kleene. On the interpretation of intuitionistic number theory. The Journal of Symbolic Logic, 10(4):109–124, December 1945.
S. C. Kleene. Realizability. In A. Heyting, editor, Constructivity in Mathematics, pages 285–289. North-Holland Publishing Company, Amsterdam, 1959. Proceedings of the Colloquium Held in Amsterdam, August 26–31, 1957.
S. C. Kleene. Introduction to Metamathematics. North-Holland, 1971.
S. C. Kleene and R. E. Vesley. The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, London, 1965.
Georg Kreisel. On weak completeness of intuitionistic logic. Journal of Symbolic Logic, 27, 1962.
S. A. Kripke. Semantical analysis of modal logic I: Normal modal propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9:67–96, 1963.
S. A. Kripke. Semantical analysis of intuitionistic logic, I. In J. N. Crossley and M. A. E. Dummett, editors, Formal Systems and Recursive Functions, pages 92–130. North-Holland Publishing Company, Amsterdam, 1965. Proceedings of the Eighth Logic Colloquium, Oxford, July 1963.
H. Läuchli. An abstract notion of realizability for which intuitionistic predicate calculus is complete. In A. Kino, J. Myhill, and R. E. Vesley, editors, Intuitionism and Proof Theory, Studies in Logic and the Foundations of Mathematics, pages 277–234. North-Holland Publishing Company, Amsterdam, London, 1970. Proceedings of the Conference on Intuitionism and Proof Theory, Buffalo, New York, August 1968.
D. M. E. Leivant. Failure of completeness properties for intuitionistic predicate logic for constructive models. Annales Scientifiques de l'Université de Clermont-Ferrand II, Section Mathematiques, 13:93–107, 1976.
P. Lincoln, A. Scedrov, and N. Shankaar. Linearizing intuitionistic implication. In Logic in Computer Science, July 1991.
J. Lipton. Kripke semantics for dependent type theory and realizabity interpretations. In these proceedings, 1991.
M. Machtey and P. Young. An Introduction to the General Theory of Algorithms. North-Holland, 1978.
J. C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B, pages 365–458. North-Holland, Amsterdam, 1990.
C. S. Peirce. On the algebra of logic: A contribution to the philosophy of notation. American Journal of Mathematics, 8:180–202, 1885.
V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In 17th Annual Symposium on Foundations of Computer Science, pages 109–121. IEEE, October 1976.
D. Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm, 1965.
G. F. Rose. Propositional calculus and realizability. Transactions of the American Mathematical Society, 75:1–19, July–September 1953.
T. Skolem. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschließlich Zahlenvariablen. Fundamenta. Mathematicae, 23:150–161, 1934. Reprinted in [11].
R. Statman. Intuitionistic propositional logic is polynomial-space complete. Theoretical Computer Science, 9(1):67–72, 1979.
R. Statman. Logical relations and the typed lambda calculus. Information and Control, 65:85–97, 1985.
Sören Stenlund. Combinators, λ-terms, and Proof Theory. D. Riedel Publishing Company, Dordrecht-Holland, 1972.
Alfred Tarski. Pojecie prawdy w jezykach nauk dedukcyjnch. Prace Towarzystwa Naukowego Warzawskiego, 1933. English translation in [45].
Alfred Tarski. Logic, Semantics, and Metamathematics. Oxford University Press, 1956.
A. S. Troelstra. Mathematical Investigation of Intuitionistic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1973.
A. S. Troelstra and D. van Dalen. Constructivism in Mathematics: an Introduction, volume II. Studies in Logic and the Foundations of Mathematics. North-Holland, 1988.
A.S. Troelstra. Choice Sequences: a chapter of intuitionistic mathematics. Oxford Logic Guides. Clarendon Press, Oxford, 1977.
A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Second Series, 42:230–265, 1937.
Johan van Benthem. Correspondence theory. In Handbook of Philosophical Logic, Volume 2: Extensions of Classical Logic, pages 167–247. D. Reidel, 1984.
L. Wittgenstein. Tractatus logico-philosophicus. Annalen der Natur-philosophie, 1921. English translation in [52].
L. Wittgenstein. Tractatus Logico-Philosophicus. Routledge and Kegan Paul, 1961.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kurtz, S.A., Mitchell, J.C., O'Donnell, M.J. (1992). Connecting formal semantics to constructive intuitions. In: Myers, J.P., O'Donnell, M.J. (eds) Constructivity in Computer Science. Constructivity in CS 1991. Lecture Notes in Computer Science, vol 613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021079
Download citation
DOI: https://doi.org/10.1007/BFb0021079
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55631-2
Online ISBN: 978-3-540-47265-0
eBook Packages: Springer Book Archive