Skip to main content

A simple and powerful approach for studying constructivity, computability, and complexity

  • Conference paper
  • First Online:
Constructivity in Computer Science (Constructivity in CS 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 613))

Included in the following conference series:

Abstract

In this contribution a natural and simple as well as general and efficient frame for studying effectivity (Type 2 theory of effectivity, TTE) is presented.

TTE is a straightforward “logic free” extension of ordinary computability theory. Three basic kinds of effectivity for functions on ∑* and ∑ω are distinguished: continuity, computability, and easy computability (computational complexity).

As the most remarkable property, continuity in TTE can be very adequateley interpreted as a basic kind of constructivity. Effectivity is transferred from ∑* and ∑ω to other sets by notations, (where finite words serve as names) and by representations (where ω-words serve as names), respectively.

In this contribution the structure of TTE is explained and its applicability is demonstrated by simple examples mainly from analysis. Especially it is shown how the “effectivity gap” between Abstract Analysis and Numerical Analysis can be closed step by step by introducing stronger and stronger effectivity requirements.

It is suggested that the theory outlined in this paper is adequate to introduce effectivity in Analysis into Comupter Science curricula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brouwer, L.E.J.: Historical background, principles, and methods of intuitionism, South African J.Sc. 49, 139–146 (1952)

    Google Scholar 

  2. Heyting, A.: Intuitionism, an introduction, North-Holland, Amsterdam, 1956 (revised 1972)

    Google Scholar 

  3. Troelstra, A.S.: Principles of intuitionism, Springer-Verlag, Berlin, Heidelberg, 1969

    Google Scholar 

  4. Bishop, E.; Bridges, D.S.: Constructive Analysis, Springer-Verlag, Berlin, Heidelberg, 1985

    Google Scholar 

  5. Ceitin, G.S.: Algorithmic operators in constructive complete separable metric spaces (in Russian), Doklady Akad, Nauk 128, 49–52 (1959)

    Google Scholar 

  6. Markov, A.A.: On constructive mathematics (in Russian), Trudy Mat. Inst. Stektov 67, 8–14 (1962)

    Google Scholar 

  7. Kushner, B.A.: Lectures on constructive mathematical logic and foundations of mathematics, Izdat. “Nauka”, Moscow, (1973)

    Google Scholar 

  8. Aberth, O.: Computable analysis, McGraw-Hill, New York, (1980)

    Google Scholar 

  9. Mazur, S.: Computable analysis, Rozprawy Matematyczne XXXIII (1963)

    Google Scholar 

  10. Grzegorczyk, A.: On the definition of computable real continuous functions, Fund.Math. 44, 61–71 (1957)

    Google Scholar 

  11. Mostowski, A.: On computable sequences, Fund.Math. 44, 37–51 (1955)

    Google Scholar 

  12. Lacombe, D.: Quelques procedes de definition en topologie recursive. In: Constructivity in mathematics (A.Heyting, ed.), North-Holland, Amsterdam, 1959

    Google Scholar 

  13. Klaua, D.: Konstruktive Analysis, Deutscher Verlag der Wissenschaften, Berlin, 1961

    Google Scholar 

  14. Hauck, J.: Berechenbare reelle Funktionen, Zeitschrift f. math. Logik und Grdl. Math. 19, 121–140 (1973)

    Google Scholar 

  15. Scott, D.: Outline of a mathematical theory of computation Science, Proc. 4th Princeton Confernce onlnform. Sci., 1970

    Google Scholar 

  16. Brent, R.P.: Fast multiple precision evaluation of elementary functions, J. ACM 23, 242–251 (1976)

    Article  Google Scholar 

  17. Ko, K.; Friedman, H.: Computational complexity of real functions, Theoret. Comput. Sci. 20, 323–352 (1982)

    Google Scholar 

  18. Müller, N.Th.: Subpolynomial complexity classes of real functions and real numbers. In: Lecture notes in Computer Science 226, Springer-Verlag, Berlin, Heidelberg, 284–293, 1986

    Google Scholar 

  19. Müller, N.Th.: Uniform computational complexity of Taylor series. In: Lecture notes in Computer Science 267, Springer-Verlag, Berlin, Heidelberg, 435–444, 1987

    Google Scholar 

  20. Beeson, M.J.: Foundations of constructive mathematics, Springer-Verlag, Berlin, Heidelberg, 1985

    Google Scholar 

  21. Kreitz,Ch.; Weihrauch,K.: Compactness in constructive analysis revisited, Informatik-Berichte Nr. 49, Fernuniversität Hagen (1984) and Annals of Pure and Applied Logic 36, 29–38 (1987)

    Article  Google Scholar 

  22. Kreitz,Ch.; Weihrauch,K.: A unified approach to constructive and recursive analysis. In: Computation and proof theory, (M.M. Richter et al., eds.), Springer-Verlag, Berlin, Heidelberg, 1984

    Google Scholar 

  23. Kreitz,Ch.; Weihrauch,K.: Theory of representations, Theoretical Computer Science 38, 35–53 (1985)

    Article  Google Scholar 

  24. Weihrauch, K.: Type 2 recursion theory, Theoretical Computer Science 38, 17–33 (1985)

    Article  Google Scholar 

  25. Weihrauch, K.; Kreitz, Ch.: Representations of the real numbers and of the open subsets of the set of real numbers, Annals of Pure and Applied Logic 35, 247–260 (1987)

    Article  Google Scholar 

  26. Weihrauch, K.: Computability, Springer-Verlag, Berlin, Heidelberg, 1987

    Google Scholar 

  27. Weihrauch, K.: On natural numberings and representations, Informatik-Berichte Nr.29, Fernuniversität Hagen, 1982

    Google Scholar 

  28. Weihrauch, K.; Kreitz, Ch.: Type 2 computational complexity of functions on Cantor's space, Theoretical Computer Science 82, 1–18 (1991)

    Article  Google Scholar 

  29. Weihrauch, K.: Towards a general effectivity theory for computable metric spaces (to appear in Theoretical Computer Science)

    Google Scholar 

  30. Weihrauch, K.: The complexity of online computations of real functions (to appear in Journal of Complexity)

    Google Scholar 

  31. Deil, Th.: Darstellungen und Berechenbarkeit reeller Zahlen, Informatik-Berichte Nr.51, Fernuniversität Hagen, 1984

    Google Scholar 

  32. Hinman, P.G.: Recursion-theoretic Hierachies, Springer-Verlag, Berlin, Heidelberg, 1978

    Google Scholar 

  33. Pour-El,M.B.; Richards, J.I.: Computability in Analysis and Physics, Springer-Verlag, Berlin, Heidelberg, 1989

    Google Scholar 

  34. Bishop, E.: Foundations of Constructive Analysis, Mc-Graw-Hill, New York, 1967

    Google Scholar 

  35. Egli, H.; Constable, R.L.: Computability concepts for programming language semantics, Theoretical Computer Science 2, 133–145 (1976)

    Article  Google Scholar 

  36. Van Wesep, R.: Wadge degrees and descriptive set theory, in Cabal Seminar 76-77, Lecture Notes in Mathematics 689, Springer-Verlag, Berlin, Heidelberg, 1978

    Google Scholar 

  37. Weihrauch, Klaus: The lowest Wadge degrees of subsets of the Cantor Space, Informatik-Berichte Nr. 107, Fernuniversität Hagen, 1991

    Google Scholar 

  38. von Stein, Thorsten: Vergleich nicht konstruktiv lösbarer Probleme in der Analysis, Diplomarbeit, Fernuniversität Hagen, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Paul Myers Jr. Michael J. O'Donnell

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weihrauch, K. (1992). A simple and powerful approach for studying constructivity, computability, and complexity. In: Myers, J.P., O'Donnell, M.J. (eds) Constructivity in Computer Science. Constructivity in CS 1991. Lecture Notes in Computer Science, vol 613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021094

Download citation

  • DOI: https://doi.org/10.1007/BFb0021094

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55631-2

  • Online ISBN: 978-3-540-47265-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics