
A Theory of Generic Interpreters

Phillip J. Windley

Laboratory for Applied Logic
Department of Computer Science

University of Idaho
Moscow ID 83843 USA

Abstract. We present an abstract theory of interpreters. Interpreters are mod-
els of computation that are specifically designed for use as templates in com-
puter system specification and verification. The generic interpreter theory
contains an abstract representation which serves as an interface to the theory
and as a guide to specification. A set of theory obligations ensure that the the-
ory is being used correctly and provide a guide to system verification. The ge-
netic interpreter theory provides a methodology for deriving important defi-
nitions and lemmas that were previously obtained in a largely ad hoe fashion.
Many of the complex data and temporal abstractions are done in the abstract
theory and need not be redone when the theory is used.

1 Introduction.

The formal specification and verification of microprocessors has received much at-
tention. Indeed, several verified microprocessors have been presented in the litera-
ture. This paper presents a model, common to all of them, that can be used to guide
future work in this area. The model defines an abstract microprocessor specification
(called a generic interpreter) and proves important theorems about it.

We have formalized the interpreter model in the HOL theorem proving system
[Gor88]. The formal model can be instantiated inside the system and serves as a
framework for writing microprocessor specifications and verifying them. This
framework clearly states what definitions must be made to specify the microproces-
sor and which lemmas must be established to complete the verification. After the
user has defined the components of the microprocessor and proven the necessary
lemmas about them, individual theorems from the abstract theory can be instantiat-
ed to provide concrete theorems about the microprocessor being verified.

The model that we have defined has proven useful in specifying and verifying
several microprocessors [Win90a, Aro90, Coe92]. The model is not, however, lim-
ited to microprocessors. Recent work by the author has shown that the model can be
used in specifying other hardware devices as well [Win91].

The model we have defined differs from other formal descriptions of slate ma-
chines (such as Loewenstein's model in [Low89]) by including in the formalization
the data and temporal abstractions that are important in specifying and verifying mi-
croprocessors.

123

2 F o r m a l Microprocessor Modeling.

There have been numerous efforts to formally model microprocessors. The best
known of these include Jeff Joyce's Tamarack microprocessor [Joy89], Warren
Hunt's FM8501 microprocessor [Hun87], and Avra Cohn's VIPER microprocessor
[Coh88]. Tamarack is a simple microprocessor with only 8 instructions. FM8501 is
larger (roughly the size of a PDP-11), but has not been implemented (a 32-bit ver-
sion is currently being verified and implemented by Hunt et al [Hun89]).

The specifications for the microprocessors mentioned above appear very differ-
ent on the surface; in fact, the specification of FM8501 is even in a different lan-
guage than the specifications of Tamarack and VIPER. On closer inspection, how-
ever, we find that each of them (as well as many others) use the same implicit be-
havioral model. In general, the model uses a state transition system to describe the
microprocessor. We call this model an interpreter. The essence of verification is to
relate mathematical models at different levels of abstraction.

The rest of this section gives a mathematical definition of the interpreter model
and shows how two interpreters are related. In the discussion that follows, and for
the rest of the paper, we speak of the "abstract level" and "concrete level," but keep
in mind that these terms are relative; as we move up and down a hierarchy of inter-
preters, what we call "abstract" at one level will be termed "concrete" with respect
to the level above it. As a matter of convention, we will decorate variables repre-
senting the concrete level with primes throughout the rest of the paper.

2.1 Interpreters.

An interpreter is a computing structure with one control point. One of the many
available instructions is chosen at this control point based on the current state and
inputs. The state is then processed by this instruction and the cycle begins again.

In general, a microprocessor specification can consist of many abstraction lev-
els. Every level except the bottom specification (which is the structural specifica-
tion) can be modeled as an interpreter. A hierarchical approach to specification and
verification has been shown to significantly reduce the amount of effort required to
complete the verification of a microprocessor [Win90b].

2.2 State.

At times it is convenient to treat state as an object of type S, where S is uninterpret-
ed. This allows us to treat state in an abstract manner, knowing nothing of its struc-
ture or content. Whether or not S is interpreted, we write S < S" to indicate that S
is an abstraction of S'. The fact that S is an abstraction of S" implies that there exists
a function, a : S ' ---> S. The function d is called the state abstraction function.

2.3 Time.

In general, different levels in the interpreter hierarchy have different views of time.
A temporal abstraction function maps time at the abstract level to time at the con-

cI):

O

124

T F: T F

()
I)

(0 0 0
T F T F F

)

T T

Figure 1. The function qs, which maps time at one level to another, can
be defined in terms of a predicate, F, which is true only when the mapping
occurs.

crete level [Her88, Joy89, Me188]. Figure 1 shows a temporal abstraction function
qb. The circles represent clock ticks. Notice that the number of clock ticks required
at the concrete level to produce one clock tick at the abstract level is irregular.

The temporal projection, cb, can be defined recursively on time. We define ~ in
terms of a predicate, F, which is true whenever there is a valid abstraction from the
concrete level to the abstract level. In a microprocessor specification, F is usually a
predicate indicating when the lower level interpreter is at the beginning of its cy-
c le - -a condition that is easy to test. The function (b is defined recursively so that
alp(F, 0) is the first time that F is true and (b(F, (n+l)) is the next time after time n
when F is true. The resulting function is monotonically increasing. We use N to rep-

resent time. Thus, we define q) : (N ---) B) x N --) N such that 1

V n, m. (n > m) ~ (cI)(F, n) > r m))

We refer the interested reader to the references given above and [Win90a] for
the details of the temporal abstraction function.

2.4 State Streams.

A state stream is a function from time to state, N ~ S. An important part of our the-
ory is the abstraction between state streams at different levels. State stream u is an
abstraction of state stream s' (written s = s') if and only if

1. each member of the range ofs is a state abstraction of some member of the range
of s" and

2. there is a temporal mapping from time in s to time in s'.
There are two distinct kinds of abstraction going on: the first is a data abstraction

and the second is a temporal abstraction. Using the state abstraction function, o, and

1. N is the natural numbers and B is the booleans.

125

a temporal abstraction function, "~ (defined in terms of q~ and F), we define stream
abstraction as follows

sc_s'=-3(G: S'--> S) �9 3 ('~ : lg ~ lg) �9 ~ o s'o'~ = s

where o denotes function composition.

2.5 Environments.

The environment represents the external world; it plays an important part in our the-
ory. The environment is where interrupt requests originate, reset signals are gener-
ated, and so on. In our model, the environment is used only for input; output to the
environment is assumed to be simply a function of the state and environment. At the
abstract level, we treat the environment as an uninterpreted type. We know nothing
about its structure or content. We denote it as E. Just as we defined cJ, the state ab-
straction function, we define an environment abstraction function, ~, such that e :
1~'---> 1~. When we provide an interpretation for e, we represent the environment us-
ing n-tuples of booleans and bit-vectors. We perform the same kinds of abstraction
on the environment as on states. Temporal abstraction is performed as it was for
states. We define abstraction for environment streams in the same manner that we
defined it for state streams. Thus, we write e c_ e' when e is an stream abstraction of
e" and define stream abstraction for environment streams as follows:

e _c e'--- 3 (e : E'--> E) �9 3 ('c :N ~ N) �9 ~ o e 'ox=e

2.6 The In te rpre te r Specification.

The preceding parts of this section have given preliminary definitions for concepts
important in the mathematical definition of interpreters. This section presents that
definition. Interpreters are state transition systems. The difference between our
model of interpreters ,and other models of state transition systems such as determin-
istic finite automata (dfa) is that our model accounts for state abstraction and aggre-
gation. By state aggregation, we are referring specifically to stores. A store repre-
sents a collection of state that we deal with as a monolithic unit. In a dfa model, each
location in memory is typically represented by a different piece of state which
would be treated individually.

An interpreter, I, is a predicate defined in terms of a 3-tuple, (d, K, C) where d,
K, and 12 are defined as follows:

�9 Let d be the type of all functions with domain (S x E) and codomain IS. Not all
functions in J are meaningful; the specifier's job is to choose meaningful func-
tions. We use a subset of J to represent the instruction set; we call this set d. The
functions in d provide a denotational semantics for the instructions that they
represent.

�9 In order to uniquely identify each instruction in d, we associate it with a unique
key. At the abstract level, we take keys from the uninterpreted domain K. At the
concrete level, keys can have various representations. For example, in the top-

126

level specification of a microprocessor, the keys may represent opcodes. We
must be able to choose instructions from d according to some predefined selec-
tion criteria. The selection is based on the current state and environment. We de-
fine K to be a function with domain (S x Ig) and codomain K.

We define (2 to be a choice function that has domain (J x K) and codomain (S
• Ig ~ S). That is, 12 picks the state transition function from J that has a par-
ticular key in K.
We define an interpreter, ! [s, el, as a predicate over the state stream, s, and the

environment, e. The definition of ! is given as

I [s, e] ---V t:N. s (t+l) = 6"(d, k t) (s t, e t)

where

k t = K (s t , e t)

The predicate constrains the state of the interpreter at time t+l to be a function
of the state and environment at time t. The function is determined by the instruction
currently selected by K.

2.7 Interpreter Verification.

Our goal is to prove a correctness relation between the interpreters at different levels
of a microprocessor abstraction. In particular, for two interpreters,/m and I l, we wish
to show that

Im[Srn, e m] ~ It[s t , e I]

where s m (era) is the state (environment) stream at level m, s t (e t) is the state (envi-
ronment) stream at level l and s, c s (e. c e). When this implication is true,/, is

�9 1 . - - r r l I - - / ' ~ . l

an abstraction of I and I is stud to implement I r The correctness theorem gwen
r r l

above follows fron~ the following lemma:

V j e , I . Im(s m, era) ^ j = C(d, k t) ~ 3 c " (~ o sin) (t+c) =j((~ o S n) t, (e 0 e) t)

This lemma, which we call the instruction correctness lemma, states that every in-
struction follows from the concrete interpreter, ! . Specifically, it says that for every
instruction,j in J, i f j is selected, then applying j'nto the current abstract state and en-
vironment, (cr o s) t and (e o e) t, yields the same abstract state that results from

�9 m . m . .

letting the concrete mterpreter I run for c cycles�9 The instruction correctness lem-
ma suggests a case analysis on t~e instruction set. In addition, the instruction cor-
rectness lemma ignores temporal abstraction, stating only that there exists a time in
the future when the states correspond. Thus, the proof obligation on the user of the
generic interpreter theory has little to do with the temporal abstraction reasoning
necessary to verify a microprocessor. That is all contained in the abstract theory.
This lemma plays an important role in the work which we describe next.

127

3 A Formal Model of Interpreters.

This section presents the our generic interpreter theory for the HOL verification sys-
tem. The basic structure is the same as presented in the last section. In addition to
the correctness result, however, we prove several other important theories about in-
terpreters including an induction theorem and theorem about hierarchical composi-
tion of interpreters.

3.1 Abstract Theories.

A abstract theory is parameterized so that some of the types and constants defined
in the theory are undefined inside the theory except for their syntax and a loose al-
gebraic specification of their semantics. Abstract theories are useful because they
provide proofs about abstract structures which can be used to reason about specific
instances of the structure.An abstract theory consists of three parts:

1. An abstract representation of the uninterpreted constants and types in the theo-
ry.

2. A set of theory obligations defining relationships between members of the ab-
stract representation. Inside the theory, the obligations represent axiomatic
knowledge concerning the abstract representation. Outside the theory, the obli-
gations represent the criteria that a concrete representation must meet if it is to
be used to instantiate the abstract theory.

3. A collection of abstract theorems. The theorems are generally based on the the-
ory obligations and can stand alone only after the theory obligations have met.
To instantiate an abstract theory, the concrete representation must meet the syn-

tactic requirements of the abstract representation as well as the semantic require-
ments of the theory obligations. If the syntactic and semantic requirements are met,
then the instantiation provides a collection of concrete theorems about the new rep-
resentation.

There ,are several specification and verification systems that support abstract
theories. Some, such as OBJ [Gog88] and EHDM [SRI88], offer explicit support.
HOL, the verification environment used for the research reported here, does not ex-
plicitly support abstract theories; however, HOL's metalanguage, ML, combined
with higher-order logic, provides a framework for concrete abstract theories in a
manner that does not degrade the trustworthiness of the theorem prover. See
[Win92] for details about using abstract theories in HOL

3.2 The Abstract Representation

We specify the abstract representation by defining a list of abstract objects and op-
erations. Table 2 shows the operations and their types.

We must emphasize that the representation is abstract and, therefore, the objects and
operations have no definitions. The descriptions that follow are what we intend for

128

Table 1 The abstract functions and their types for the generic interpreter model.

Operation Signature

instructions - * k e y - > (* s t a t e - > * e n v - > * s t a t e)

select : * s t a t e - > * env- > * key

output : *key- > (* state- >*env- >*out)

substate �9 *state" ->*state

subenv : *env ' ->*env

subout : *out ' ->*out

implementation : (time' ->*state') -> (time' ->*env') ->bool

sync : *state ' - >*env ' - >bool

the representation to mean. The representation is purely syntactic, however.The fol-
lowing abstract types are used in the representation.

�9 : * s t a t e represents the state and corresponds to S from the last section.

�9 �9 * e n v represents the environment and corresponds to E from the last section.

�9 : * o u t represents the outputs. In the model in the last section, outputs were as-
sumed to be a function of the current state and environment. In the formal mod-
el we will represent this explicitly.

�9 : * k e y is type containing all of the keys and corresponds to K from the last sec-
tion.

The abstract representation can be broken into three parts. The first contains
those operations concerned with the interpreter.

�9 i n s t r u c t i o n s is the instruction set. The set is represented by a function
from a key to a state transition function and corresponds to d from the last sec-
tion.

�9 s e l e o t picks a key based on the present slate and environment and corre-
sponds to K from the last section.

�9 o u t p u t is a set of output functions. The set is represented by a function from a
key to a function that produces output for a given state and environment.

The second part contains the abstraction functions:

�9 s u b s t a t e is the state abstraction function for the interpreter and corresponds
to o from the last section.

�9 s u b e n v is the environment abstraction and corresponds to e from the last sec-
tion.

�9 s u b o u t is the output abstraction.

129

Because we want to prove correctness results about the interpreter, we must
have an implementation. The third part of the abstract representation contains three
functions which provide the necessary abstract definitions for the implementation.

�9 i m p l e m e n t a t i o n is the abstract implementation. We could have chosen to
make this function more concrete, but doing so would require that every imple-
mentation have some pre-chosen structure. Thus, we say nothing about it except
to define its type.

�9 s y n c is the synchronization predicate for the temporal abstraction and corre-
sponds to F from the last section.

The components of the last part of the abstract representation correspond to concrete
interpreter from in level below the abstract interpreter we are defining.

3.3 The Theory Obligations

Proving that the implementation implies the interpreter definition is typically done
by case analysis on the instructions; we show that when the conditions for an in-
struction's selection are right, the instruction is implied by the implementation. We
call this the instruction correctness lemma.

The predicate INSTRUCTION_CORRECT expresses the conditions that we re-

quire in the instruction correctness lemma}

~def INST_CORRECT gi s' e" p' k =

(implementationgi s' e" p') ==>

(:t :time' .

let s t = substate gi (s' t) in

let e t = subenv gi (e" t) in

let f t = sync gi (s' t) (e' t) in (

(select gi (s t) (e t) = k) /\

(f t) ==>

? c. Next f (t,t+c) /\

(instructions gi k (s t) (e t) = (s(t + c)))))

INSTRUCTION_CORRECT operates on a single key, k. This theory obligation
requires that the implementation imply that for every time, t , if k is the key re-
turned by s e l e c t and the synchronization predicate is true, then there is time c
cycles in the future such that applying the instruction selected by k to the current
state yields the same state change that the implementation does in c cycles.

INSTRUCTION_CORRECT is a good example of the kind of information that
is captured in the generic model. Previous microprocessor verifications created this
lemma, or one similar to it, in a largely ad hoc manner.

1. The HOL code in the remainder of the paper is shown using the HOL convention
of representing universal quantification, existential quantification, lambda quanti-
fication, implication, conjunction, disjunction, and negation by the symbols !, ?, \
==>,/',, 'q., and ~ respectively. The form "el => e2 1 e3" represents "if el then e2
else e3."

130

Because our model has outputs as well as inputs (the environment), we must also
assume something about the output in order to establish correctness. The predicate
OUTPUT_CORRECT expresses the conditions that we require in the output correct-
ness lemma:

~def OUTPUT__CORRECT gi S" e' p' k =
(implementation gi s' e' p') ==>

(It:time' .

let s t = substate gi (s' t) in

let e t = subenvgi (e' t) in

let p t = subout gi (p' t) in

let f t = sync gi (s' t) (e' t) in (

(select gi (s t) (et) --k) /\

(f t) ==>

(p t = (output gik) (s t) (e t))))

OUTPUT_CORRECT is similar to INSTUCTION_CORRECT. The major difference
is that output is assumed to happen instantaneously and thus there are no temporal
considerations.

Using INSTRUCTION_CORRECT and OUTPUT_CORRECT we can define the

theory obligation for our model. The theory obligations are given as a predicate on
an abstract representation g i :

~def GI gi =
(is' e' p' k. INST_CORRECT gi s' e' p' k) /\

(!s' e" p' k. OUTPUT_CORRECT gi s' e" p" k)

The predicate says that every instruction in the instruction set satisfies the predicate
INSTRUCTIOH_CORRECT and every output function satisfies the conditions set
forth in OUTPUT_CORRECT.

3.4 Abstract Theorems

Using the abstract representation and the theory obligations, many useful theorem
pertaining to interpreters can be established on the generic structure.

Defining the Interpreter . One of the important parts of the collection of abstract
theorems is the definition of a generic interpreter. The definition is based on func-
tions from the abstract representation.

~def INTERP gi s e p =
I t : time.

let k = (select gi (s t) (e t)) in

(s(t+l) = (instructions gi k) (s t) (e t)) /\

(p t = (output gik) (s t) (e t))

The specification of an interpreter is a predicate relating the contents of the state
stream at time t+l to the contents of the state stream at time t. The relationship is
defined using the functions from the abstract representation. The definition also
uses the currently selected output function to denote the current output.

131

Induction on Interpreters. The definition of the interpreter sets up a relation be-
tween the state at t and t+l. Sometimes it is useful to have a more explicit statement
regarding induction. The following theorem, which follows from the definition of
the interpreter given in Section 3.4.1, defines induction on an interpreter:

! Q. INTERP gi s e p ==>

(Q (s 0) /\

.It. let inst = (instructions gi

(select gi (s t) (et))) in (

Q (s t) ==>Q (inst (s t) (et)))) ==>

,t. Q (s t)

The theorem states that for any arbitrary predicate on states, Q, if O is true of the state
at time 0 and when Q is true of the state at time t, it follows that its also true of the
state returned by the current instruction, then Q is true of every state.

We note that even though this theorem looks fairly simple, and indeed is quite
easy to show in the generic theory, the theorem will eventually be instantiated with
the entire denotational description of the semantics of a particular instruction set and
will be quite involved. The same admonition holds for each of the theorems and def-
initions presented in this section.

The Implementation is Live. Using the theory obligations, we can prove that the
implementation is live. By live we mean that if the implementation starts at the be-
ginning of its cycle, then their is a time in the future when the implementation will
be at the beginning of its cycle again. That is, we show that the device will not go
into an infinite loop.

implementation gi s' e' p' ==>

(!t. (sync gi (s' t) (e' t)) ==>

(?n. Next(\t. sync gi (s" t) (e' t)) (t,t + n)))

N e x t P (t 1 , t 9.) says that t 2 is the next time after t 1 w h e n P is true.

The Correctness Statement. The correctness result can be proven from the defi-
nition of the interpreter and the theory obligations:

let s t = substate gi (s" t) and

e t = subenvgi (e' t) and

p t = subout gi (p' t) and

g t = sync gi (s' t) (e" t) in

let abe = Temp Abe f in

(implementation gi s' e" p') /\

(?t. f t) ==>

(INTERP gi) (s O abe) (e o abe) (p o abe)

In the correctness statement, s ", e ' , and p ' are the state, environment, and out-
put streams in the implementation. The function a b e is defined in terms of a general
purpose temporal abstraction functions, Temp ABe, corresponding to �9 and a
predicate, g, corresponding to F. The terms (s o a b e), (e o a b e), and (e o
a b e) are the state, environment, and output streams for the interpreter defined in
the model. They are data and temporal abstractions of s ", e ' , and p ' . The correct-

132

ness statement says that if the implementation is valid on its state, environment, and
output streams and there is a time when the concrete clock is at the beginning of its
cycle, then the interpreter is valid on its state and environment streams.

Vertical Composition. In [Win90b], we show that hierarchical decomposition
makes the verification of large microprocessors practical. To support this decompo-
sition, the generic interpreter model contains theorems about vertically composing
generic interpreters.

More generally, we can say that any two generic interpreters can be composed
to form another generic interpreter as long as the implementation of one is the inter-
preter of the other. We define a composition operator as follows:

~des GI_VERT_COMP gil gi2 =
GI ((instructions gi2)

(select gi2)
(output gi2)
((substate gi2) o (substate gil))
((subenvgi2) o (subenvgil))
((subout gi2) o (subout gil))
(imp lement at ion gi i)
(\se .

(sync gil s e) /\
(sync gi2 (substate gil s)

(subenv gil e)))

The resulting structure composes the data abstractions using function composition
and requires that the synchronization predicates at both levels be true.

We can prove that the structure resulting from such a composition is a generic
interpreter (i.e. it has all the properties of a generic interpreter) under a single restric-
tion:

(INTERP gil = implementation gi2) ==>
IS_GI(GI VERT COMP gil gi2)

Provided that the interpreter defined by the first is the implementation of the second,
the resulting structure is a generic interpreter. This theorem is more generally useful
since we can prove the theory obligations of each level of the hierarchy separately,
show that the composition of these separate results is a generic interpreter using this
theorem, and then use the result to instantiate the correctness theorem from section
3.4.4 to show that the bottom-most member of the hierarchy implies the top-most
member.

A further result shows that the composition operator is associative and, there-
fore, the order of the composition is unimportant:

GI VERT_COMP gil (GI VERT_COMP gi2 gi3) =
GI VERT COMP (GI_VERT_COMP gil gi2) gi3

The generic interpreter theory contains the structure for the entire proof, freeing
the user from worrying about the data and temporal abstractions that result from the
composition. The theorems about vertical composition are a good examples of the

133

utility of abstract theories in hardware verification. The theorems are tedious to
prove in specific cases and were they not contained in the abstract theory, they
would have to be proven numerous times in the course of a single microprocessor
verification.

4 Conclusion

This paper has described the generic interpreter model. The theory isolates the tem-
poral and data abstractions of the proof inside the abstract theory. The theory also
contains several important theorems about the abstract representation. These theo-
rems are true of every instantiation of the abstract representation that meets the the-
ory obligations. The theory has important benefits:

�9 The generic model structures the proof by stating explicitly which definitions
must be made (one for each of the members of the abstract representation) and
which lemmas need to be proven about these definitions (namely, the theory ob-
ligation). This is a substantial improvement over previous microprocessor veri-
fications where these decisions were made on an ad hoc basis.

�9 The genetic model insulates users of the model from complex proofs about the
data and temporal abstractions, These proofs are done once and then made avail-
able to the user by instantiation.

�9 The use of a generic interpreter model for specifying and verifying microproces-
sors provides a methodological approach. Making specification and verification
methodological is an important step in turning what has been primarily a re-
search activity into an engineering activity.
We have used the generic interpreter theory to verify a microprocessor, AVM-

1, with a modern load-store architecture [Win90a]. Other efforts to use the genetic
interpreter theory are underway. We believe that our methodology makes micropro-
cessor verification accessible by non-experts. We are testing our belief by using the
generic interpreter theory to introduce microprocessor verification to graduate stu-
dents with no previous verification experience [Coe92].

Based on our experience with AVM-1, we are confident that the generic inter-
preter theory makes microprocessor specification and verification significantly eas-
ier because of the structure that it entails and the theorem reuse that it enables.

5 References

[Aro90]

[Coe921

Tejkumar Arora. The formal verification of the VIPER microprocessor:
EBM to microcode level. Master's thesis, University of California,
Davis, 1990.

Michael L. Coe and Phillip J. Windley. Using the Generic Interpreter
Theory to Verify Microprocessors: A Tutorial. Technical Report LAL-
92-10, University of Idaho, Department of Computer Science, Labora-
tory for Applied Logic. December, 1992.

134

[Coh88]

[SRI881

IGor88]

[Gog881

[Her88]

[Hun87]

[Hun89]

[Joy89]

[Low89]

[Me188]

[Win90a]

[Win90b]

[Win91]

[Win92]

Avra Cohn. Correctness properties of the VIPER block model: The sec-
ond level. Technical Report 134, University of Cambridge Computer
Laboratory, May 1988.

SRI International Computer Science Laboratory. EHDM Specification
and Verification System: User's Guide, Version 4.1, 1988.

Michael J.C. Gordon. HOL: A proof generating system for higher-order
logic. In G. Birtwhistle and P.A Subrahmanyam, editors, VLSI Specifi-
cation,Verification, and Synthesis. Kluwer Academic Press, 1988.

J. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-
CSL-88-9, SRI International, August 1988.

John Herbert. Temporal abstraction of digital designs. In G.J. Milne,
editor, The Fusion of Hardware Design and Verification, Proceedings
of the IFIP WG 10.2 International Working Conference, Glasgow,
Scotland. North-Holland, 1988.

Warren A. Hunt. The mechanical verification of a microprocessor de-
sign. In D. Borrione, editor, From HDL Descriptions to Guaranteed
Correct Circuit Designs. Elsevier Scientific Publishers, 1987.

Warren A. Hunt. Microprocessor design verification. Journal of Auto-
mated Reasoning, Vol 5, pages 429--460, 1989.

Jeffrey J. Joyce. Multi-Level Verification of Microprocessor-Based
Systems. PhD thesis, Cambridge University, December 1989.

Paul Loewenstein. Reasoning about state machines in higher-order log-
ic. In M. Leeser and G. Brown, editors, Workshop on Hardware Speci-
fication, Verification, and Synthesis: Mathematical Aspects, Lecture
Notes in Computer Science. Springer-Verlag, 1989.

Thomas Melham. Abstraction mechanisms for hardware verification. In
G. Birtwhistle and P. A. Subrahmanyam, editors, VLSI Specification,
Verification and Synthesis. Kluwer Academic Publishers, 1988.

Phillip J. Windley. The Formal Verification of Generic Interpreters.
PhD thesis, University of California, Davis, Division of Computer Sci-
ence, June 1990.

Phillip J. Windley. A hierarchical methodology for the verification of
microprogrammed microprocessors. In Proceedings of the IEEE Sym-
posium on Security and Privacy, May 1990.

Phillip J. Windley. The formal specification of a high-speed CMOS
correlator. In Proceedings of the Third Annual IEEE/NASA Symposium
on VLSI Design, October 1991.

Phillip J. Windley. Abstract Theories in HOE In Proceedings of the
1992 International Conference on the HOL theorem Prover and its Ap-
plication, October 1992.

