
E m b e d d i n g  Hardware Verif ication wi th in  a 
Commerc ia l  Des ign  Framework 

Thomas Kropf, Ramayya  Kumar and Klaus Schneider 

Universit~it Karlsruhe, Institut flir Rechnerentwurf und Fehlertoleranz 
(Prof. D. Schmid) 

P.O. Box 6980, W-7500 Karlsruhe 1, Germany 

A b s t r a c t .  A methodology for verifying complex circuits is presented, 
based on a strong coupling of design verification with the hierarchical 
design process. This goal has been achieved by integrating MEPHISTO, 
a tool for semi-automated hardware verification, into a commercial de- 
sign framework. MEPHISTO decomposes the verification goal by a set of 
hardware-specific proof tactics and provides strategies for synthesizing 
pre-verified regular components. In case of erroneous implementations, 
MEPHISTO aids the designer in debugging the circuit by generating a 
counter model, i.e. input stimuli where specification and implementation 
behave differently. 

1 I n t r o d u c t i o n  

To guarantee reliable circuits especially in safety critical applications, and to 
avoid time consuming and costly redesigns, tools for checking design errors in 
circuits are mandatory.  Usually, this is accomplished by specifying the desired 
functions and properties of the chip and proving formally that  a given implemen- 
tat ion behaves according to the specification. Although methods and techniques 
for formal hardware verification have been developed during the past few years, 
no tools usable outside academia have evolved yet. Hence simulation with appro- 
priate stimuli is still the widely accepted means for validating circuit correctness. 
However, since exhaustive simulation is not feasible for large designs, design error 
freeness cannot be ensured. 

Automated high-level synthesis is another means to derive presumably cor- 
rect circuit implementations from a given specification [1]. However since the 
synthesis programs are themselves complex and do not have an underlying for- 
mal apparatus, the correctness of the circuits generated cannot be guaranteed. 
Furthermore, they are restricted to certain classes of circuits (e.g. signal pro- 
cessors) and are still inferior to manually designed circuits concerning timing 
efficiency and area requirements. Hence manual designs continue to exist and 
have to be checked formally for correctness. 

In order to be accepted as an every day design tool, hardware verification 
approaches have to fulfill the following criteria: 

- a high degree of automation 
- applicability to real-world designs 
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- easily readable specification languages 
- allow hierarchical verification 
- integration within commercial design systems 

Some of these criteria are fulfilled by one of the two main approaches to hardware 
verification, which is based on propositional logics and/or model checking tech- 
niques for finite state machines (FSMs). Since satisfiability checking in proposi- 
tional logic as well as checking the equivalence of two FMSs is decidable, these 
approaches lead to fully automated tools [2]. Although tremendous progresses in 
the manageable problem size have been achieved [3] and approaches combined 
with test generation are possible [4], they are only capable of handling medium 
sized circuits at gate level. Moreover, the underlying formalisms are not capable 
of expressing design hierarchies and complex data types like natural numbers 
may not be directly used. Hence, these approaches are mostly restricted to the 
verification of controllers and are not yet usable in verifying complex designs. 

Therefore, approaches based on first order logic like (Buyer-Moore [5]) or 
higher-order logic gain more and more importance. Since predicate logics are 
undecidable, full automation is not possible. Most approaches based on this logic 
are therefore based on interactive theorem proving systems like HOI_ [6], where 
most proof steps have to be triggered manually. However, it has been shown 
recently, that more automation is possible by integrating first-order automated 
theorem proving techniques within such an environment [7]. Moreover, in the 
context of hardware verification, the related proofs are in many cases structured 
in a similar manner, so that much automation is possible here also [7]. 

Higher-order logic is well suited for hierarchically describing circuits at dif- 
ferent levels of abstraction [8]. Since, in contrast to FSM based techniques there 
are no size restrictions, this formalism is usable to describe and verify designs 
of realistic sizes, e.g. significant parts of the TAMARACK microprocessor have 
been verified [9]. 

In higher-order logic, hardware specifications may be formalized in a natural 
manner, i.e. comparable to known hardware description languages [8, 10]. Ad- 
ditionally, it is also possible to transform specifications given in a usual HDL 
like ELLA [11] into a representation in higher-order logic [12]. For these reasons, 
the work presented in this paper also relies on the use of higher-order logic for 
specifying and verifying hardware. However, the related interactive proof system 
HOt is only used as an implementation platform for different automation ap- 
proaches and augmented by: FAUST, a first-order based theorem proving tool to 
automate tedious logical proof steps, and MEPHISTO, a hardware verification 
workbench which contains heuristics to automate hardware proofs [7]. 

In this paper a verification environment is presented which is usable by nor- 
mal circuit designers to perform hierarchical hardware verification, hand in hand 
with the usual design process. For that purpose FAUST and MEPHISTO, cou- 
pled with HOE, have been integrated into the CADENCE design framework [13]. 
This leads to a close coupling of design and verification. In contrast to a post- 
design verification style, design errors are found immediately and time consuming 
redesigns are avoided. However, in general not all proof steps can be fully au- 
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tomated. Therefore a close linkage between design and verification is necessary, 
since our experience has shown that in most cases necessary manual proof steps 
closely reflect the designers creative ideas used to design the circuit modules. 

The outline of this paper is as follows. First related work in the areas of 
designing correct circuits is presented. Afterwards, the principles of hierarchical 
hardware verification are introduced. Then the integration of the verification 
tool MEPHISTO into the commercial design framework CADENCE [13] is pre- 
sented along with an example for error detection in circuits. The use of generic 
modules (regular modules with arbitrary bitsizes), stored in a library of pre- 
proven hardware components is elaborated. Using an example circuit, the whole 
process of designing a correct circuit is illustrated. The paper ends with results 
and conclusions. 

2 R e l a t e d  W o r k  

Although many techniques for hardware verification have been published, only 
few approaches integrate design systems and verification tools, to achieve a com- 
plete system for hierarchically designing correct circuits. However, they do not 
provide any support if the verification fails. 

Fourman et al. have developed a methodology for designing correct circuits, 
using the LAMBDA theorem proving environment [14]. The approach is mainly 
based on formally guided synthesis, i.e. a given formal specification is successively 
decomposed until the circuit is given in terms of basic components. The necessary 
formal proofs are performed in interaction with a schematic entry tool. However, 
the refinements have to be carried out manually and the tool is not connected 
to a real design system. 

Busch et al. have refined this approach for interactively designing circuits 
by applying formal transformation, aimed at the synthesis of non-hierarchical 
modules. The approach is well suited for regular designs as filters or signal pro- 
cessors, but does not exploit design hierarchies. Since the underlying system is 
LAMBDA, only minor steps are automated. 

3 B a s i c s  o f  h i e r a r c h i c a l  H a r d w a r e  V e r i f i c a t i o n  

To be able to perform formal reasoning about circuit behaviour, it must be 
formalized appropriately. Most approaches to hardware verification use a declar- 
ative or relational description of hardware components, first proposed by Hanna 
and Daeche [15]. 

3.1 Formal iza t ion  of  Hardware  Behav iour  

Lines and wires are described using functions over time, e.g. y(t) indicates the 
time dependent value of a wire y. Time is usually formalized using natural num- 
bers t E 1~. Depending on the abstraction level, time instants related to a certain 
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value of N may be e.g. clock ticks of a synchronous system or t ime points of a 
fixed time schedule (e.g. 10 ns each). The related circuit signals (inputs and 
outputs) may be boolean values, bit vectors, natural numbers, etc. For example, 
the output  y of a boolean gate is modelled by a function y : N ~ {F,T}, where 
F and T denote the boolean values false and true, respectively. 

The behaviour of modules and whole systems is described using higher-order 
predicates with functions as arguments. Predicates may be seen as characteristic 
functions indicating the set of admissible valuations at the inputs and outputs  
of the components to be specified. 

A simple XOR-gate with two inputs a and b and an output  y is specified by 
a predicate XOR_SPEC as follows: 

[ Va b y. XOR_SPEC(a,b,y) := Vt. y(t) ~-* -~(a(t) ~-* b(t)) I 

Fig. 1. Implementation of an XOR-gate 

Figure 1 shows the realization of an XOR-gate  by using AND, OR and NOT- 
gates. A predicate XOR_IMP describes its structure. It is assumed here, tha t  
the behavioural specifications of the modules (INV,  AN2, OR2) are stored in 
a library. 

V a b. XOR_IMP(a, b, y) := 
(3 tl ~2 t3 ~4 ts. 

INY(b, ~1) A INY(a, ~2) A AN2(a, b, s A 
Ag2(el, ~2, g4) A 0R2(~3, ~4, ~) A IgY(e5, y) 

Assuming a specification S and an implementation I in logic, circuit correctness 
is established by proving the validity of I ---* S in case of partial specifications 
and I ~-~ S for complete specifications [16]. For the XOR-gate  the goal to be 
proven is given below: 

I Vaby. XOR_IMP(a,b,y) ~ XOR.SPEC(a,b,y)  I 

The hardware proofs are generally carried out using: 

- domain dependent axioms (e.g. the behavioural definition of modules and 
structural implementations), 
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- domain dependent theorems (e.g. properties of components  or complex da ta  
types) and 

- domain independent axioms and theorems of higher-order logic like modus  
ponens or structural  induction [17]. 

Advances in au tomat ing  many  of the underlying proof  steps have been already 
achieved [7]. This has been implemented in the verification tool MEPHJSTO 
which has been embedded within the HOL theorem prover. A typical HOL- 
session 1 for verification of the XOR-example is shown below, where ' - '  and '=' 
indicate the user's input: 

- nee_theory "xor";  
- n e e _ p a r e n t  " e s 2 " ;  

- nee_def init ion ("XOR_SPEC", 

ffi -- 'XOR_SPEC((a:nu~->bool),b,y) = !t:num. y t ffi - ( a  t ffi b t ) ' - - ) ;  

- nee_definition("XOR_I~W", 
= - - ' X O R _ I M P ( a , b , y )  ffi 

ffi 711 12 13 14 15. 

ffi INV(b, l l )  / \  INV(a,12) / \  AND(a,b,13) / \  
ffi AND(ll,12,14) / \  0R2(13 ,14 ,15 )  / \  I N V ( 1 S , y ) ' - - ) ;  

- v a l  goa l  = ( [ ]  , - - ' ! a  b y.  XOR_IMP(a ,b ,y )  ,. X O R 2 ( a , b , y ) ' - - ) ;  

- v a l  t h  = t a k e _ t i m e  TAC_PROOF ( g o a l ,  NON_GENERIC_TAC) ; 

Time : 1. 700000 sees 

- save_th in ("XDR_CORRECT"); 

I 1 

It  can be seen from session 1 given above that  the goal has been proved auto- 
mat ical ly  by using a single tactic called NON_GENEI~IC_TAC ~. The implementat ion 
X O R _ I M P  uses components from the formalized CADENCE library called 'es2'. 
This proven goal can be stored as a theorem called X01~_C0RRECT and can be used 
later in hierarchical proofs. 

3.2 H i e r a r c h i c a l  H a r d w a r e  V e r i f i c a t i o n  

Usually, realistic design implementat ions are too complex to be represented in a 
fiat manner  as described above. Hence, during the design phase, they are divided 
hierarchically into interconnected functional blocks. Each functional block may  

1 In MEPHISTO we have developed a set of tactics which are always applicable for 
automatically solving the goals at the Register Transfer level. In the HOL notation, 
the symbols !, ? , / \ ,  \ / , ,  \ represent the logical symbols V, 3, A, V,-, and ~, respec- 
tively. The function nee_theory starts a new theory for each verification step, and 
the function nee_def in i t ion  defines constants in this theory. The use of pre-proven 
definitions and theorems is done by the function nee_parent. For better readability, 
unimportant HOL responses are suppressed in all sessions. 

2 Details of proving such goals are given in [7]. 
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be represented again by smaller functional blocks, until each is represented by 
a structure of basic components, i.e. primitive cells (library components), which 
are not divided further. 

This design inherent hierarchical structure may be also used to divide up 
the verification process, in order to reduce the problem size, and to identify 
erroneously designed components. To achieve this goal, each module has to be 
provided with a formal specification. This specification is then used to verify 
the correctness with regard to the specifications of the submodules and the 
interconnection information (figure 2) as described in the last subsection. 

@ 
Compound Modules 

Base Modules 

Fig. 2. Complete Hierarchical Decomposition 

Proceeding this way, considerable savings in terms of formula complexity are 
possible, since module specifications are usually more compact than the formula 
describing the implementation (see e.g. formulas corresponding to XOR_SPEC 
and XOR_IMP). 

As depicted in figure 2, it is not necessary that each compound module carries 
a formal specification. Especially if a module serves only for grouping submodules 
and there exists no concise semantical interpretation of the compound module, 
it can be cumbersome to write down a specification. In such cases, the intercon- 
nection structure has to be flattened out until each submodule corresponds to a 
specification. 

A complete chip implementation is proven correct, if the top level chip speci- 
fication as well as all intermediate module specifications have been proven valid. 
Only the specification of base modules are handled as axioms and need not be 
verified. 

4 C o u p l i n g  D e s i g n  a n d  V e r i f i c a t i o n  

To be executed efficiently, the hierarchical design process, as presented in the 
last section must be supported by appropriate tools. In our case, the design 
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part is covered by the CADENCE system [13] and verification is supported by 
the MEPHISTO verification workbench, which leads to an automation of most 
parts of the proof process. Both tools are coupled by a hierarchy manager, which 
is responsible for converting the implementation data into formal descriptions 
in higher-order logic, resolving the design hierarchy by determing the scope of 
the actual verification step, managing the already proven verification goals and 
performing all the bookkeeping required for guaranteeing completely verified 
circuits. The structure of the complete system is given in figure 3. 

Design Entry / Designer ~Speclflcatlon Entry 

S~em~.c I ~ I I 
I EntrJ [ Status Information I Text Editor I 

i =~ i i I 
i ~ ~ i ~c~,~,ie.~,ies 
l ~ u . o  , . ~  I 

Design 1~ ~ ~- I  Hierarchy I .Proof Gea,s 
.... I p e t = -  r "  Manager I ~ _ . ~ a t  u 1 

M-::)olna: I I MEPHISTO 
place '~&PR'o~e J l EDIF Verification 

Generated Modules System 

Layout Information 
(CIF) 

Fig. 3. System for Designing Correct Circuits 

Proof Goal 

MEPHISTO C 

Base 
Component 

Library of . 
preproven 
Modules ,el.-- 

l Module Generators ] 

Generated Modules 

Subgoal 
Decomposition 

Expansion of Definitions 

Partitioning into Subgoals 

Subgoal Simplification 

i Simplified Subgoals 
t 

FAUST 
automated theorem prover 

I 

.•_.•1 
DAb:trr ts 

'~, Manual 
Interaction 

Proof 
' Heuristics 

~t 
Proof Status 

Fig. 4. The MEPHISTO Proof Tool 
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The hierarchy manager pairs the generated formal implementation with the ap- 
propriate specification to form a proof goal, which is then fed to the M E PH ISTO 
verification system. MEPHISTO contains a set of hardware specific heuristics to 
decompose the verification goal into smaller subgoals, which are easier to solve 
[7]. The subgoals are then solved by an automated theorem prover FAUST 3, also 
contained in MEPHISTO. If the goal to be proven is not solvable, i.e. the im- 
plementation is erroneous, then a counter model 4 for the goal is generated for 
aiding the designer in identifying the erroneous component. MEPHISTO has been 
fully embedded into the HOI_ theorem proving environment [6], thus ensuring the 
formal correctness of all the steps. 

After the verification process M EPHISTO reports the result of the verification 
a t tempt  to the hierarchy manager. A more detailed drawing of MEPHISTO is 
given in figure 4. 

The correct formal descriptions of the base components are given in a base 
component library. In our standard-cell based design system, this l ibrary has 
been manually built from the data sheets of the standard cell library. 

For frequently used modules, which are not basic standard cells, a second 
library is maintained, in which already proven modules are kept, to shorten the 
verification process. This library is also used as the base of the module generators, 
described in the next section. 

Using the XOR-ga te  as shown earlier, we shall now illustrate the design of a 
faulty H A L F _ A D D E R  (figure 5) and the subsequent error detection as reported 
by MEPHISTO, via a HOt session. 

12 
- new_theory "half_adder"; 

- new_parent "es2"; 

- new_parent "xor"; 

- new_def init ion (" HALF_ADDER 1_IMP", 

= --'HALF_ADDERI_IMP a b sum c = 

= EQUIV(a,b,sum) /\ (* This should be an XOR gate *) 

ffi A N 2 ( a , b , c )  ' - - )  ; 

- n e w _ d e f  i n i t  i o n  ("HALF_ADDER_SPEC", 

ffi -- 'HALF_ADDER_SPEC a b s u m  c 

ffi ! t : n u m .  ( sum t ffi ( a  t ffi b t )  ) / \  ( c  t ffi a t / \  b t )  ' - - ) ;  

- v a l  g o a l l  = ( [ ] ,  - - '  ! a  b sum c .  HALF_ADDERI_IMP a b s u m  c ffi 

HALF_ADDER SPEC a b sum c O - - ) ;  

- val th ffi TAC_PROOF (goalI,NON_GENERIC_TAC); 

-->PROOF FAILED! ! COUNTER MODEL FOUND! ! 

It can be seen from session box 2 that  the tactic NON_GENERIC_TAC is not able 
to solve a goal and outputs  the message 'COUNTER MODEL FOUND'. When this 

3 FAUST is based on an efficient variant of the tableau calculus [18, 7, 19]. 
4 Details of the generation of counter models from tableau proofs can be found in [20]. 
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- pp_SHOW_ERROR goall std_out; 

The following counter model has been found: 

a- (\t. F) b- (\t. F) 

The left hand side of the goal evaluates to: 

! t .  sum t / \  - ( c  t )  

The r i g h t  h a n d  s i d e  o f  t h e  g o a l  e v a l u a t e s  t o :  

! t .  - ( sum t )  / \  -(r t )  

1 3 

- n e w _ d e f i n i t i o n  

( " H A L F _ A D D E R _ I N P " ,  

-- 'HALF_ADDER_INP a b s u m  c 

= X0R_SPEC(a,b,sum) / \ l N 2 ( a , b , c )  '--) ; 

- v a l  g o a l  - ( [ ] ,  - - ' ! a  b sum c .  HALF_ADDER IMP a b s u m  c -- 

HALF_ADDER SPEC a b sum c ' - - ) ;  

- v a l  t h  = t a k e _ t i m e  TAC PR00F (goal,NON_GENERIC TAC); 

Time : 0 . 2 5 0 0 0 0  s e e s  

val th = []l- !a b sum c. 

HALF_ADDER_IMP a b sum c m HALF_ADDER_SPEC a b sum c :thin 

- save_tlm ("HALF_ADDER_CORRECT", th); 

Fig. 5. The implementations of the ]aulty and correct H A L F . _ A D D E R  

happens, the designer can call the function pp_SHOW_ERROR to identify the error 
(session 3). This function assigns a value to the inputs where the implementation 
differs from the specification. In the H A L F _ A D D E R  example, when the inputs 
a and b are set to F, then the value of the s u m  output in the implementation 
differs from that of the specification. 

5 Generic Modules  and Module  Generators  

One of the main advantages in using higher-order logic is the possibility of 
defining generic components, i.e. recursively defined regular n-bit structures like 
adders or shift-registers. Once proven correct and added to the system, they may 
be easily tailored to specific needs and automatically instantiated to a given bit- 
width by module generators. Since such components are often used in hardware 
designs, major savings in the proof effort result. To add such a component to 
the library, the following tasks have to be done: 
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1. specify formally the n-bit component using predefined operators [21]. 
2. specify formally and implement the 1-bit component 
3. define the recursive construction algorithm (generalized implementation) for 

the n-bit component, using the implementation of the 1-bit component and 
predefined operators 

4. derive the correctness proof for the n-bit component using MFPHISTO 
5. add the component specification and implementation algorithms to the li- 

brary 

To use such a component, the parameter n has to be specialized to the required 
value, which is performed by a simple logical specialization (e.g. n to 16 bit) 
of the component specification. To achieve an implementation of the specialized 
component, the construction algorithm is directly used by the module generator 
to automatically derive a netlist, which is then used by the commercial design 
system to define the module in terms of standard cell basic components. 
Using the H A L F _ A D D E R  that we have designed, we can design a 1-bit adder 
and an n-bit ripple carry adder as shown in figure 6. The specification, the 
implementations and the proof of correctness is shown in the HOL session 4. 

False~ ,̂ , _,n~ I L l-sum(u; 

a(O) d T. [ ~sum(O) 
a(n)" I I Usum(n) 
b(0) [~  co 
b (n) u--~ -L 

~sum (n+ 1 ) 
a (n+l) [Cl CO~-- cout b(n+l) 

Fig. 6. The implementation of the 1-bit and n-bit ripple carry adder ADDER_N 

In HO[_ session 4, the specification of A D D E R _ N  has been given using the pre- 
defined n-bit operators PLUS and PCARRY. Such specifications can be interactively 
derived from specifications using operators on natural numbers. The implemen- 
tation of the 1-bit adder uses the theory of half_adder  as a parent. The HOl_ 
function called new_prim_zee_definition is used to define n-bit adder in a re- 
cursive manner. The goal can then be proved automatically by a single tactic 
called r which applies induction over the bitsize n and performs the 
simplification of the goals in a manner similar to NON_GENERIC_TAC. Once the 
n-bit component has been proved, it can be instantiated by using the function 
called INST..DEF. This automatically defines a new constant called ADD_2_IMP 
in the current theory and proves the correctness theorem ADD_2_CORRRCT which 
corresponds to the equivalence between a 2-bit instantiation of the n-bit adder 
(ADDS_IMP 2 a b sum c0ut )and  the 2-bit adder (ADD_2_IMP a b sum c0ut). 

6 Design of Verified Circuits 

In the following, the methodology for designing a correct circuit is illustrated 
using an example. Our approach closely reflects the normal design process. The 
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designer has to additionally add a formal specification at each level of the design 
hierarchy, which is then used for the formal verification process. To design correct 
circuits in a top-down manner, the following steps have to be performed: 

1. create a formal specification of the intended circuit behaviours 
2. create an implementation at one hierarchy level 

3. extract a formal implementation description 
4. create formal specifications for the modules used in the implementation (in 

case that  they are not base modules) 

5. verify the correctness of the module versus its specification 

6. repeat step 2.-6. for all modules until a module consists only of the base 
modules of the design system 

Step 2 is performed using a commercial design system. The details of step 3 and 
step 5 are described in detail in [7]. 

1 4 
- new_theory "adder"; 

new_parents ["es2", "natural n ~ "half_adder"] ; 

- new_def init ion ("ADDER_N_SPEC", 

= --'ADDER_N_SPEC n a b sum cOut = !t:num. 

= (PLUS n (\x.a x t) (\x.b x t) (\x.sum x t) F) /\ 

= (cOut t = PCARRY n (\x.a x t) (\x.b x t) F)~--); 

- new_definition("ADDER_l_IMP", 

ffi --~ADDER_I_IMP cIn a b sum c = 

= ? 11 12 13. 

= HALF_ADDER_SPEC a b 11 12 /\ 

= HALF_ADDER_SPEC 11 cIn sum 13 /\ OR2 (12, 13, c)'--); 

- new,prim_rec_def init ion ("ADDER_N_IMP", 

= --' (ADDER_N_IMP 0 a b sum cOut - 

= ADDER_I_IMP (\t:num.F) (a O) (b O) (sum O) cOut) /\ 

= (ADDER_N_IMP (SUC n) a b sum c0ut = 

-- ?ii. ADDER_N_IMP n a b sum ii /\ 

-- ADDER_I_IMP II (a(SUC n)) (b(SUC n)) (sum(sue n)) cOut)~--) 

- val goal = ([],--~!n a b sum cOut. ADDER_N_IMP n a b sum cOut = 

ADDER_N_SPEC n a b sum cOut'--); 

- val th = take_time TAC_PROOF (goaI,GENERIC_TAC); 

Time : 6.490000 sees 

val th = []l- !n a b sum cOut. 

ADDER_N_IMP n a b sum cOut = ADDER_N_SPEC n a b sum cOut :thin 

- save_thin ("ADDER_N_CORRECT" Dth) ; 

- take_time (INST_DEF (definition "-" "ADDER_N_IMP")) (--'2 ~--) ; 

Time : 1.040000 secs 
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We illustrate the design of verified circuits using the 'de l ta '  circuit, whose infor- 
mal  specification is as follows: out ~-* c < a + b. This informal specification can 
be t ransformed into a formal  specification D E L T A _ N _ S P E C ,  by using the pre- 
defined operators  over bitvectors as used in Section 5. Figure 7 gives a possible 
implementat ion ( D E L T A _ N _ I M P )  of the circuit using an n-bit  adder, an n-bit  
less than circuit and some gates. The theory corresponding to the ' less-than'  
circuit can be generated in a manner  similar to the ' adder '  circuit. 

Theory: adder 

Definitions: 

ADDER_2_IMP []I- !a b sum cOut. 

ADDER_2_IMP a b sum cOut ffi 

(?11. ( ?11 ' .  ADDER_I_IMP ( \ t .  F) (a 0) (b 0) (sum 0) 11'  / \  
ADDER_I_IMP 11' (a 1) (b t)  (sum 1) 11) / \  
ADDER_I_IHP 11 (a 2) (b 2) (sum 2) c0ut) 

Theorems: 

ADDER_2_CORRECT 

[][- ADDER_2_IMP a b sum c0ut = ADDER_N_IMP 2 a b sum c0ut 

ADDER_N_CORRECT [ ]1-  !n a b sum cOut. 
ADDER_N_IMP n a b sum cOut ffi ADDER_N_SPEC n a b sum cOut 

I 5 

13 a n,~[-~ ~.. 
b ~t 12 

out  

Fig. 7. The implementation of the DELTA_N circuit 

f DELTA-N-_S FEC 1 

~ADDER_N_IMP J ~ LESS_N.JMP ) 

LF ADDER_IMP) ' ' 

Fig. 8. The hierarchy tree for the DELTA_N circuit 



254 

The design hierarchy of the implementation of this circuit is given in figure 8. 
It can be seen in the HOL session 6, that in the verification of the equivalence 
between DELTA_N_IMP and DELTA_N_SPEC, only the specifications of 
the 'adder' and the 'less-than' circuits are used. Since the 'delta' circuit is also 
a parametrizable circuit, the tactic called GENERIC_TAC is sufficient for proving 
the correctness of the goal. It should however be noted that induction is not 
required in proving this goal. 

1 6 
n e e _ t h e o r y  " d e l t a "  ; 

n e e _ p a r e n t s  [ " e s 2 " ,  " n a t u r a l " ,  " a d d e r " ,  " l e s s " ]  ; 

n e e _ d e f  i n i t  i o n  

("DELTA_N_SPEC", 

= -- 'DELTA_N_SPEC n a b c o u t  = 

= ? l l . ! t : n t m .  (PLUS n ( \ x . a  x t )  ( \ x . b  x t )  ( \ x . l l  x t )  F) / \  

= ( o u t  t = LS n ( \ x . c  x t )  ( \ x . l l  x t )  / \  

= -PCARRY n ( \ x . a  x t )  ( \ x . b  x t )  F ) ' - - ) ;  

- n e e _ d e f i n i t i o n  

= ("DELTA_N_IMP", 

= -- 'DELTA_N_IMP n a b c o u t  = 

= ?11 12 13 14 .  

= ADDER_N_SPEC n a b ii 12 /\ LESS_N_SPEC n c ii 13 /\ 

= INV ( 1 2 ,  14)  / \  AN2 ( 1 3 ,  14 ,  o u t ) ' - - ) ;  

- v a l  g o a l  = ( [ ] , - - ' !  n a b c o u t .  DELTA_N_IMP n a b c o u t  = 

= DELTA_N_SPEC n a b c o u t ' - - ) ;  

- v a l  t h  = t a k e _ t i m e  TAC_PROOF (goal ,GENERIC_TAC);  

Time : 2.350000 

- save_tlm("DELTA_N_CORRECT",th) ; 

The instantiation of a 4-bit delta circuit is shown in HOt session 7. By using 
the function INST_D~.F, the hierarchy tree of the the delta circuit is searched to 
find the existence of the 4-bit instantiations of all the parametrizable components 
used in the design, and the required instantiations and their correctness theorems 
are first generated before the 4-bit delta circuit is created. Assuming that a 4- 
bit 'less-than' circuit exists in the parent theory 'less', a call to the function 
INST_DEF, generates HOL session 7. 

Figure 9 corresponds to the implementation which has been automatically 
generated by the function INST_DEF. This function also generates the correctness 
theorems ADDER_4_CORRECT and DELTA_4_COItltECT. The time required for proving 
the correctness and finding the instantiations (2.76 secs.) illustrate the power of 
using higher-order techniques for exploiting the hierarchy and using concept of 
generic components. 
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- take_time (INST_DEF (definition "-" "DELTA_N_IMP")) (--'4'--); 

[opening /tmp/ADDER. sml] 

v a l  it = 

[ ] [ -  !a  b sum t O u t .  

ADDER_4_INP a b sum cOut - 

(7 i l .  ( ? i l , , , .  ( ? i l , , . ( ? i l , .  
ADDER_I_IMP ( \ t .  F) (a  O) (b O) ( s tm O) 11' / \  
ADDER_I_IMP 11' (a 1) (b 1) (stm 1) 1 1 ' ' )  / \  
ADDER_I_IMP 11 ' '  (a 2) (b 2) (sum 2) ii''') /\ 

ADDER_I_IMP 1 1 ' ' '  (a 3) (b 3) (sum 3) 11) /\ 

ADDER_I_IMP ii (a 4) (b 4) (sum 4) cOut) :thin 

[closing /tmp/ADDER. sml] 

[opening /imp/DELTA. sml] 

val it = 

[ ] l -  !a b c out.  
DELTA_4_IMP a b c out = 

(711 12 13 14. 

ADDER_4_INP a b 11 12 /\ LESS_4_INP c II 13 /\ 

INV (12,14) /\ AN2 (13,14,out)) :thm 

[closing /tmp/DELTA. sml] 

Time : 2.760000 

val it = () :unit 

I 7 

:0 ~-~--~I I' sumO 
bO 
al-'~ ~ ~-~i,, suml 

a3 sum3 
cout 

Fig. 9. The automatically generated implementation of a 4-bit adder 

7 Experimental  Results 

We have used MEPHISTO to prove different small and medium sized circuits at 
RT-level, e.g. parity, serial adder, flipflops, shift registers, twisted ring counter, 
sequence detectors 5 in a mat ter  of seconds [22]. Circuits at RT-level can be veri- 
fied automatically [7]. We have also developed heuristics for simple generic com- 
ponents such as n-bit comparators or n-bit adders which allow the verification 
of these components without manual interaction. However, currently this does 
not hold for arbi trary generic components e.g. systolic arrays, since this requires 
the  automation of induction and number theory proofs which is not possible in 

s A detailed description of some of these circuits can be found in the appendix of [7]. 
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general [23]. If complex data  types such as stacks, lists or trees are used for the 
specification, interactive proof steps are required to provide lemmata  necessary 
for the verification process. For these steps the HOi. system is used directly in 
the usual interactive manner. This semi-automated approach allows to verify 
even complex hierarchically designed circuits. Currently we are validating our 
system by the verification of a real-sized chip designed in CADENCE. 

8 Summary 

In this paper, we have presented a methodology for designing real circuits cor- 
rectly using a commercial design framework for semi-custom designs. It has been 
shown, how formal specifications are used to verify circuit implementations at 
different hierarchy levels. To allow a close interaction between the design and the 
verification tasks at each hierarchy level, the MEPHIS-I'O verification system has 
been integrated as a design tool into a commercial system. M EPH ISTO comprises 
the automatic generation of formal implementation descriptions in higher-order 
logic from designed circuit structures, bookkeeping facilities to supervise the 
hierarchical verification process, a set of transformation rules and heuristics to 
structure hardware proofs, counter model generation for faulty implementations, 
automatic module generator for generic components, as well as an automated 
theorem prover FAUST to free the designer from tedious formal proof tasks. 

At the moment,  specifications have to be written directly in higher-order 
logic. Various abstract data  types are available to obtain concise and readable 
specifications [21]. As VHDL is the de-facto standard for specifying hardware, 
our current work aims at embedding this hardware description language in our 
verification system [24]. 
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