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1.  I n t r o d u c t i o n  

In our world we are frequently concerned with describing and analyzing three-dimen- 
sionai (3-D) rigid objects in 3-D space. However, we often have at our disposal only a 2-D 
medium, such as paper or a computer-graphics screen, on which to display a necessarily 
incomplete representation or picture of  the objects we are interested in. Therefore it is de- 
sirable to obtain 2-D representations of our objects that approximate the real objects as 
faithfully as possible in some sense [KK93], [Ga95]. A sub-field of visualization closely 
related to the class of  problems considered here is graph-drawing [DETT]. One of  the ar- 
chetypal problems in graph-drawing consists of asking, for a given graph, a "nice" drawing 
of it. A graph in this context is not a rigid object in 3-D space but a more abstract topolog- 
ical structure which permits the shortening, lengthening and bending of its edges to achieve 
the desired goal. By contrast, we are concerned with rigid metrical objects in 3-D space 
which are composed of  points (vertices) and line segments (edges) and we would like to 
obtain "nice" projections of these objects on some plane that will afford them. 

We are concerned here with parallel or orthogonal projections [FDFH] rather than 
perspective projections. Parallel projections may be considered as perspective projections 
in the limit as the view point approaches a location infinitely far away from the object being 
viewed. Intuitively, we may think of our object as a wire-frame sitting in 3-D space above 
the horizontal (~y) plane, and the parallel projection of the object on the xy-plane as the 
shadow cast by the wire frame when a light source shines from a point infinitely high along 
the positive z-axis. Obtaining "nice" parallel projections of an object then reduces to the 
problem of finding a suitable 3-D rotation for the object such that its shadow on the xy- 
plane contains the desired properties. 

To date such problems have received scant attention in the computational geometry 
literature. When the objects are convex polyhedra (solid bodies) several questions have 
been explored. For example, a problem of interest in robotics concerns the determination 
of  whether a convex polyhedron may be translated through a "door" that has the shape of 
a convex polygon. Geometrically this problem reduces to determining if the polyhedron has 
a shadow that fits in the door [St82], [To85]. Algorithms have also been found for deter- 
mining the projections of a convex polyhedron that minimize or maximize the area of the 
shadow that the polyhedron makes on a plane when placing a light source at infinity 
[MS85], [BGK95]. In computer graphics, good projections for radiosity computation are 
those that yield the most number of facets visible from the viewpoint [Co90]. On the other 
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hand, when the objects are 3-D polygonal objects (skeletons or wire-frames) very little is 
known. Hirata et al., [HMTT] give bounds on the worst-case combinatorial complexity of  
the simplest projections of the skeletons of  3-D convex subdivisions onto a plane. Such 
simple projections have application to the design of efficient 3-D point location query al- 
gorithms [PT92]. Closer in spirit to the work presented here, Kamada and Kawai [KK88] 
present a n  O(n 6 log n) time algorithm for computing the projection of a wire-frame, that in 
a sense maximizes the projected minimum distance between parallel segments. Finally, 
Bhattacharya and Rosenfeld [BR94] have studied a special class of  orthographic projec- 
tions called Wirtinger projections for 3-D polygons. 

In the work presented here the objects considered are polygonal structures in 3-D. 
Such objects include sets of  disjoint line segments, 3-D simple polygons, knots, trees, and 
more generally, sets of  segments in which the segments may touch each other at their end 
points, such as skeletons of 3-D Voronoi diagrams or other subdivisions such as those in 
[HMTT]. There are many specific geometrical characteristics of the vague notion of  the 
"niceness" of  a projective drawing of an object. Some of  these are more desirable than oth- 
ers depending on the application in mind. One requirement of "nice" is that all the signifi- 
cant features of  the 3-D object should be visible in the projection. In other words, no vertex 
should lie behind another, no edge should look like a vertex and no edge should hide an- 
other edge. Furthermore, no three edges may have an interior point in common. This type 
of  projection, closely related to Wirtinger projections [BR94], is useful in visualizing knots, 
and in knot theory is called a regular projection IRe83], [Li93]. Another requirement for 
effective visualization is simplicity. One measure of  simplicity is the number of crossings 
of edges in the projection. It is desirable to obtain the projection that minimizes the number 
of crossings. We will refer to such projections as minimum-crossing projections. If the min- 
imum number of crossings is zero we call such projections crossing-free. In some applica- 
tions we may have a 3-D directed tree as an object of interest. Such a tree may represent a 
system of veins in the human brain for example, where the direction of an edge represents 
the direction of blood flow in the corresponding vein segment. Here it is of interest to de- 
termine if there exists a projection such that all the directions of the edges of the tree are 
monotonically increasing in a specified direction on the projection plane. In general we call 
such projections monotonic projections. More specifically, a projection is monotonic if the 
projected image on the projection plane is monotonic. A planar polygonal chain is monot- 
onic if there exists a direction such that every line orthogonal to this direction, that inter- 
sects the chain, yields a point as the intersection. A planar polygon is monotonic if it can 
be partitioned into two chains each of which is monotonic with respect to the same direc- 
tion. A tree is monotonic if it contains a root and a direction such that all paths from the root 
to the leaves are monotonic with respect to that direction. In this paper we investigate the 
above four types of projections for objects which are sets of disjoint line segments, simple 
polygons, polygonal chains and trees. 

We should add here that the notions of minimum crossing drawings and monotonic 
drawings are classic visualization problems that have been well studied in the context of 
graph drawing [DETT]. The general question of given a graph, can one find an embedding 
in the plane that minimizes the number of  crossing edges, is NP-complete [GJ83]. In fact 
this problem is also NP-complete for a variety of special cases [SSV94]. A lot of  work has 
been done for drawing graphs in a monotonic way in the plane. These drawings are known 
in the graph-drawing literature as upward planar drawings. The general problem of deter- 
mining for a given directed'graph, whether it can be drawn in the plane such that every edge 
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is monotonically increasing in the vertical direction and no two edges cross is NP-complete, 
as is the problem of deciding if an undirected graph can be drawn in the plane such that 
every edge is a horizontal or vertical segment and no two edges cross [GT95]. 

In this paper we consider the following problems. Given a polygonal object (geomet- 
ric graph, wire-frame or skeleton) in three dimensional euclidean space (such as a simple 
polygon, knot, skeleton of a Voronoi diagram or solid model mesh), we consider the prob- 
lem of computing "nice" parallel (orthographic) projections of the object. If  we imagine the 
viewer to be positioned at infinity above the xy-plane we are asked for a rotation of the ob- 
ject in space such that its projection on the xy-plane has the desired "niceness" properties. 
We consider a variety of definitions of "nice." One such definition, well known in the 
graph-drawing literature, is a projection with few crossings. We consider the most general 
polygonal object, i.e., a set of  disjoint line segments. We show that given a set o f n  line seg- 
ments in space, deciding whether it admits a crossing-free projection can be done in O(n a 
log n + k) time and O(n x) space, where k is the number of such intersections and k = O(n4). 
This implies for example that given a simple polygon in 3-space we can determine if there 
exists a plane on which the projection is a simple polygon, within the same complexity. 
Furthermore, if such a projection does not exist, a minimum-crossing projection can be 
found i n  O(n 4) time and O(n x) space. Another definition of "nice is that of a regular pro- 
jection (of interest to knot theorists) where the projection has the property that no point of  
the projected image corresponds to more than two points of the original object in space. We 
show that a set of  line segments in space (which includes polygonal objects as special cas- 
es) always admits a regular projection, and that such a projection can be obtained in O(n 3) 
time. A description of the set of  all directions which yield regular projections can be com- 
puted in O(n 3 log n + k) time, where k is the number of intersections of a set of  quadratic 
arcs on the direction sphere and k = O(n6). Finally, when the objects are polygons and trees 
in space, we consider monotonic projections, i.e., projections such that every path from the 
root of the tree to every leaf is monotonic in some direction on the projection plane. We 
solve a variety of such problems. For example, given a polygonal chain P, we can deter- 
mine in O(n) time if P is monotonic on the projection plane, and in O(n log n) time we can 
find all the viewing directions with respect to which P is monotonic. In addition, in O(n 2) 
time, we can determine all directions for which a given tree or a given simple polygon is 
monotonic. 

2. Regular and Wirtinger projections 
Let S be a set of  n distinct and disjoint line segments in E 3 specified by the cartesian 

coordinates of their end-points (vertices of S) and let H be a plane. Let S H be the parallel 
projection of S onto H. A parallel projection of S is said to be regular if no three points of 
S project to the same point on H and no vertex of S projects to the same point on H as any 
other point on S [Li93]. This definition implies that for disjoint line segments (1) no point 
of S n corresponds to more than one vertex of S, (2) no point of S n corresponds to a vertex 
of S and an interior point of an edge of S, and (3) no point of Stt corresponds to more than 
two interior points of  edges of  S. Therefore the only crossing points (intersections) allowed 
in a regular projection are those points that belong to the interiors of precisely two edges of  
S. This condition is crucial for the successful visualization and manipulation of  knots 
[Li93]. Knots are defined as polygons in 3-D and are special cases of  sets of line segments 
where not all segments are disjoint. Note that a vertex where two edges are joined together 
in the case when the line segments form a 3-D polygon counts as (not two) but one vertex. 
Regular projections of  3-D polygons were first studied by the knot theorist K. Reidemeister 
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in 1932 [Re32] who showed that all 3-D polygons admit a regular projection and in fact 
almost all projections of polygons are regular. This result was re-discovered by Bhatta- 
charya and Rosenfeld [BR94] for a restricted class of regular projections known as Wirting- 
er projections. Regular projections allow two consecutive edges of a 3-D polygon to project 
to two colinear consecutive edges on H. Therefore some shape features of the polygon are 
lost in regular projections. For visualization applications this may not be desirable. Those 
regular projections in which it is also required that no two consecutive edges of the 3-D 
polygon have colinear projections, are known as Wirtinger projections. The above authors 
did not address the algorithmic complexity of actually finding regular or Wirtinger projec- 
tions. In this section we study the complexity of computing a single regular or Wirtinger 
projection as well as constructing a description of all such projections for the more general 
input consisting of disjoint line segments. These results include therefore results for 3-D 
chains, polygons, trees and geometric graphs in general. The description of all projections 
allows us to obtain regular or Wirtinger projections that optimize additional properties. For 
example, one may be interested in obtaining the most tolerant projection in the sense that 
it maximizes the deviation of the view-point required to violate the regularity property. 

Given three line segments (edges of S) in E 3, all the directions d that result in a non- 
regular projection of S in which we have a point of S H that corresponds to three interior 
points of edges of S, are specified by the family of line transversals of the three edges in 
question. Using results by Avis and Wenger [AW87], lAW88] on transversals of three 
skew lines in space it can be shown that each triple of segments of S yields an arc, on the 
unit sphere of directions, which corresponds to those directions that do not admit a regular 
projection. These arcs are produced by the intersections of a conic and the sphere of direc- 
tions. Furthermore, these arcs have measure zero on the sphere and therefore cannot cover 
it. Using a similar argument it follows that the other cases also lead to measure-zero forbid- 
den directions thus establishing the following lemma. 

Lemma 2.1: A set of line segments in space always admits a regular projection. 

To compute a regular projection of a set of line segments, or a description of all the 
directions that admit a regular projection, one may in theory compute the arrangement of 
the O(n 3) arcs on the sphere. However, the intersection of two quadratic surfaces yields arcs 
on the sphere that are space curves of degree four and computing the arrangement of such 
curves is difficult in practice. A much better approach is to project these arcs from the 
sphere to the plane z= 1 since then we only need to compute the arrangement of a set of qua- 
dratic arcs on the plane. There exist several optimal segment-intersection algorithms for 
computing the arrangement of a set of arcs on the plane. The algorithms of Chazelle & 
Edelsbrunner [CE92] or Amato, Goodrich and Ramos [AGR95] do not appear to be able to 
be modified to handle quadratic curve segments. However, recently Balaban [Ba95] dis- 
covered an optimal algorithm that computes all intersections of quite general curves, in- 
cluding quadratics, that has time and space complexities O(n log n + k) and O(n), respec- 
tively, where k is the number of intersections among the curves. Thus we obtain the follow- 
ing results. 

Theorem 2.2: Given a set of line segments in space, a regular projection can be obtained 

in O(n 3) time. A description of  the set of all directions which yield regular projections can 

be computed in O(n 3 log n + k) time, where k is the number of intersections of  the arcs on 

the direction sphere and k = O(n6). 
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One may wonder if it is worth using the optimal quadratic curve segment intersection 
algorithm of Balaban in practice given that there is a suboptimal but very simple algorithm 
due to Bentley and Ottman [BO79] that also handles quadratic curve segments and has time 
and space complexities O(n log n + k log n) and O(n), respectively, where k is the number 
of  intersections among the curves. Balaban has conducted experiments comparing his op- 
timal algorithm to the Bentley-Ottman algorithm for as many as 4,000 segments and the 
latter algorithm was twice as fast. In fact, Balaban suggests that in practice the suboptimal 
algorithm should be used unless the number of segments is at least 200,000. 

Recall that a Wirtinger projection [BR94] of a 3-D polygon is a special type of regular 
projection in which no two adjacent edges project to a pair of colinear edges. We can use 
the above approach to compute Wirtin~er projections of polygons also. For Wirtinger pro- 
jections we have, in addition to the O(n ~) forbidden curve segments on the direction sphere, 
a set of n additional forbidden great circles. Each pair of adjacent edges of the 3-D polygon 
yields a plane that contains them. Translate this plane to the origin and intersect it with the 
sphere of directions. This intersection is a forbidden great circle of directions since for each 
view point on this circle the two adjacent edges appear to be colinear. In total we still have 
O(n 3) forbidden curve segments and great circles. We therefore conclude the following. 

Theorem 2.3: Given a polygon P in space, a Wirtinger projection of  P can be obtained 

in O(n 3) time. A description of the set of all directions which yield a Wirtinger projection 

o f  P can be computed in O(n 3 log n + k) time, where k is the number of intersections of arcs 

and great circles on the direction sphere and k = O(n6). 

3. Minimum-crossing projections 
Whereas a regular projection of a set of line segments always exists, this is not true 

of  crossing-free projections. To establish this it suffices to construct a counter example with 
three line segments very close to each other and parallel to the three orthogonal axes of the 
cartesian coordinate system. Here we are interested in computing a description of all the 
directions (if any exist) that admit crossing-free projections. Furthermore, if no crossing- 
free projections exist we are interested in finding projections that minimize the number of 
crossings. Recall that for graph-drawing problems, obtaining a minimum-crossing drawing 
is NP-complete [GJ83], [SSV94]. By contrast, for the projective drawing versions of these 
problems we provide polynomial time solutions. 

Given two line segments (edges of 33 in E 3, all directions d that result in a non-cross- 
ing-free projection of S in which we have a point of S n that corresponds to two points of 
different edges of S, are specified by the family of line transversals of the two edges in ques- 
tion. In E 3 two edges of S yield a tetrahedron as a description of this family of transversals. 
This tetrahedron in turn determines four great-circle arcs on the unit sphere of directions 
that define a convex spherical quadrilateral. Thus each pair of segments of S yields a spher- 
ical quadrilateral on the direction sphere that corresponds to a set of directions which results 
in a crossing occurring between these two line segments. Such quadrilaterals are termed 
forbidden. This leads to the following lemma. 

Lemma 3.1: A set of disjoint line segments in space admits a crossing-free projection iff 
there exists a point on the sphere of directions that it is not covered by a forbidden quadri- 
lateral 
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The set of O(n 2) forbidden spherical quadrilaterals determined by all pairs of seg- 
ments in E 3 determines a spherical arrangement on the sphere of directions. We may con- 
vert this arrangement to another arrangement of straight-line (possibly unbounded) quadri- 
laterals on a plane by projecting the forbidden quadrilaterals to the plane z= 1. To determine 
if S admits a crossing-free projection then reduces to the problem of determining if the 
transformed straight-line quadrilaterals cover the plane. We can do this by computing the 
contour o f  the union of these quadrilaterals. If the contour of the union is empty, then there 
is no direction that yields a projection without crossings. 

Several algorithms have been developed for computing the contour of the union of a 
set of polygons. Some of these [SB92], [CN89], [NP82] are customized versions of the 
Bentley-Ottman line-segment intersection algorithm [BO79]. All of them compute the en- 
tire arrangement induced by the quadrilaterals and assign to each face in the arrangement, 
the number of quadrilaterals that intersect it. Faces numbered with zero form the contour 
of the union, Nievergelt & Preparata [NP82] present a version of the algorithm tailored spe- 
cifically for convex polygons whose time and space complexities are O(n log n + k) and 
O(n), respectively, where n is the number of segments in the polygons and k is the number 
of intersections of the segments. Souvaine & Bjorling-Sachs [SB92] propose another algo- 
rithm that computes the contour of the union from the vertical map by using topological 
sweep in time linear in the size of the map. This algorithm achieves the same time and space 
bounds as the algorithm of Nievergelt & Preparata [NP82]. However, in order to apply ei- 
ther of these algorithms to compute the contour of the union in our context, they require 
minor modifications to handle the unboundedness of some of our quadrilaterals. Thus we 
have the following theorem. 

Theorem 3.2: Given a set of n line segments in space, deciding whether it admits a cross- 

ing-free projection can be done in O(n 2 log n + k) time and O(n 2) space, where k is the num- 

ber o f  edge intersections and k = O(n4). 

If a set of line segments does not admit a crossing-free projection it is of interest to 
compute the projection that minimizes the number of crossings. To solve this problem we 
can proceed in a similar manner to that described above but this time search the entire ar- 
rangement to find the region covered with the minimum number of quadrilaterals. There- 
fore we have the following result. 

Theorem 3.3: Given a set of  n line segments in space, a minimum-crossing projection can 

be found in O(n 4) time and O(n 2) space. 

Besides the obvious application of minimum-crossing projections to visualization, we 
mention here that they also have applications to point location problems in 3-D. Consider 
a 3-D convex subdivision of space. Recall that the point location algorithm of Preparata & 
Tamassia [PT92] projects the skeleton of the subdivision onto the xy-plane to obtain a new 
planar subdivision with additional vertices at all intersection points. This planar subdivi- 
sion is then pre-processed for planar point location before doing binary search on the z di- 
rection. We can apply our algorithm to the original subdivision to minimize the memory 
required by the planar point location portion of their algorithm. 
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4. Monotonic projections 
The general notion of monotonicity is another characteristic of polygonal objects that 

aids in their visualization. A simple polygonal chain in 3-D may not admit a crossing-free 
projection but it may admit a projection which is monotonic in some direction. Here we are 
interested in determining questions such as: does a given structure admit a monotonic pro- 
jection in some unspecified direction? Such problems closely resemble the NP-complete 
problem of determining for a given directed graph, whether it can be drawn in the plane 
such that every edge is monotonically increasing in the vertical direction and no two edges 
cross [GT95]. Again, by contrast we provide polynomial time solutions to a variety of sim- 
ilar orthographic projective versions of these drawing problems. First we consider the mo- 
notonicity of polygonal chains in E 3. Specifically, we address three questions. Given a po- 
lygonal chain P and a direction d, is P monotonic with respect to direction d? Recall that a 
polygonal chain P = v l, v 2 ..... v n is monotonic in direction d provided that the intersection 
of P with every plane with normal d is empty, or a point. We show how to answer this ques- 
tion in O(n) time, where n is the number of vertices of P. Next, given a polygonal chain P, 
we ask if P is monotonic in some direction? We present an algorithm that determines 
whether a polygonal chain is monotonic in O(n) time. Finally, given a polygonal chain P, 
it is of interest to determine all directions of monotonicity of P. We show how to compute 
all the directions for which P is monotonic in O(n log n) time. 

Given two points a and b, let ab denote the vector directed from a to b and ba the vec- 
tor directed from b to a. A plane can be defined by a point p contained in that plane and the 
normal vector n of the plane. Given a point p and a vector n, the plane defined by them is 
denoted by H(p,n).  Given a plane h=H(p,n), we define the two half-spaces determined by 
this plane as follows. The open and closed half-spaces h § are defined as {x/px.n > 0} and 
{ x / p x . n  > 0}, respectively. Similarly, the open and closed half-spaces h" are defined as 
{ x / p x . n  < 0 } and { x / p x . n  < 0 }, respectively. Henceforth, all half-spaces are open unless 
explicitly stated otherwise.To avoid ambiguity and simplify the discussion, we adopt the 
convention that i fP  is monotonic in direction d, then v 1 is a minimum for P with respect to 
d. We first address the question of deciding whether a polygonal chain is monotonic in a 
given direction. A key property of chains monotonic with respect to direction d is that their 
sub-chains are also monotonic with respect to d. 

The above implies that it suffices to determine all directions for which a line segment 
is monotonic in order to compute all directions for which a polygonal chain is monotonic. 
Now a line segment is monotonic in every un-oriented direction except those perpendicular 
to the line segment. By our convention, we are interested in the oriented directions where 
line segment lab] is monotonic and a is minimum with respect to the given direction. The 
point a is a minimum with respect to all directions D = {d / d. ab > 0}. Let h --- H(O, ab) 
(where O is the origin). It follows that all directions for which [ab] is monotonic can be rep- 
resented by the intersection of the half-space h + with the unit sphere S 2 that represents all 
directions in space (the sphere of directions). Given a polygonal chain P = v 1, v 2 ..... v n and 
a direction d, we would like to determine if P is monotonic with respect to d. We simply 
verify that each of the line segments of P: [vl,v2], [Ve,V 3] ..... [v n. l,l,'n] is monotonic with re- 
spect to d, i.e., that vjvj+l.d > 0. We conclude with the following. 

Theorem 4.1: Given a polygonal  chain P and a direction d, in O(n) time, one can deter- 
mine i f  P is monotonic  with respect to d. 
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We can determine if a polygonal chain P = Vl, v2,... , v n is monotonic for some direc- 
tion in the following way. Let hi + represent the half-space determined by the plane H(O, 
vivi+ 1 }). Let D be the intersection of the hi + over all i. Then the set of all directions for which 
P is monotonic is described by D (3 S 2, Determining if D, the intersection of a set of half- 
spaces is non-empty can be accomplished in linear time using linear programming [Me83]. 
Therefore we conclude with the following. 

T h e o r e m  4.2: Given a polygonal chain P, one can determine if P is monotonic in O(n) 
time. 

As noted above, D ~ S 2 describes the set of all the directions from which P is mo- 
notonic. Since the intersection of a set of  half-spaces can be computed in O(n log n) time 
[PS85], we conclude with the following. 

T h e o r e m  4.3: Given a polygonal chain P, one can determine in O(n log n) time all the di- 
rections with respect to which P is monotonic. 

Now we turn to the monotonicit~, of  simple polygons and trees in E3.The polygonal 
chains, simple polygons and trees in E ~ are all graphs embedded in E 3. In order to continue 
the discussion in this more general setting, we define a geometric graph. A geometric ~raph 
is a two-tuple (V, E), where V i s a  finite set of distinct points in general position in E ~, and 
E is a family of  closed straight-line segments with end-points in V. The elements of  V and 
E are called vertices and edges, respectively. For more definitions and terminology con- 
cerning graphs, the reader is referred to [BM76]. In the previous section, the geometric 
graphs that we considered were paths. In this section, we concentrate on trees and cycles 
(polygons). We begin by describing some properties of geometric graphs. Given a vertex v 
of  a geometric graph G, we denote the set of edges adjacent to v by EA(v). 

L e m m a  4.4: Vertex v is a minimum with respect to d for  EA(v) if and only i f•  e E EA(v), 
v is a minimum with respect to d for  e. 

Given a vertex v of a geometric graph G, we denote by MD(v) the set of directions 
for which v is a minimum for the set EA(v). Let e = [vv i] be an edge in EA(v). By e we denote 
the vector v v i. Let h(e) = H(O,e). We see that MD(v) is the intersection of h§ over all e 
contained in EA(v). A vertex v of a geometric graph is aproper local minimum with respect 
to direction d provided that v is a minimum for the set EA(v) in direction d. A vertex v is a 
local minimum with respect to direction d if 'V' e E EA(v), the edge e is contained in the 
closure of  H+(v,d). 

We now address several questions concerning the monotonicity of trees. Suppose we 
are given a rooted tree T, and a direction d. The first question we address is to determine if 
T is monotonic in direction d. Notice that two things are specified in this question, the root 
of the tree and the proposed direction of monotonicity. The next four questions we address 
are the following: (1) Given a rooted tree T, does there exist a direction d for which T is 
monotonic? (2) Given an unrooted tree T and direction d, does there exist a root such that 
T is monotonic with respect to d? (3) Given an unrooted tree T, does there exist a direction 
d and a root of  T such that T is monotonic with respect d? (4) Given an unrooted tree T, find 
all roots and directions for which T is monotonic. 
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Recall that a tree T is called a rooted tree if a unique vertex v of T is specified to be 
the root, otherwise the tree is unrooted or f ree .  A rooted tree T is monotonic in direction d 
provided that the path from the root to every vertex is monotonic in direction d. The key 
behind the efficient solution of  all above-mentioned problems depends on the following 
characterization of  the monotonicity of  rooted trees. 

L e m m a  4.5: A rooted tree T is monotonic  in direction d i f  and only i f  the root r o f T  is a 
p roper  local min imum and no other vertex is a local minimum with respect  to direction d. 

Proof :  ( ~ )  Assume T is monotonic with respect to d. If r is not a proper local minimum 
then at least one root to leaf path in T is not monotonic. Suppose there exists a vertex 
v of  T that is not the root, such that v is a local minimum. Let h = H(v,d). We see that 
EA(v)  must be in the closure of  h § Let P be the unique path from r to v in T. P must 
be monotonic since Tis monotonic. Also, the root r is a minimum and v is a maximum 
for P with respect to direction d, by the convention of monotonic paths. Therefore, 
P~v must be contained in h-. Let vj be the vertex preceding v in P. Since vj is adjacent 
to v, we see that [vvj] ~ EA(v).  But this implies that [vvj] is contained in the closure 
of  h + which contradicts the monotonicity of P. 

( ~ )  Given a vertex v, we will represent the plane H(v,d) by h v. Assume that the root 
r of T is the only proper local minimum and no other vertex of T is a local minimum. 
Let v be an arbitrary vertex of T. We will show that the path P from r to v must be 
monotonic in direction d. Let the path P = v I (=r), v 2 ..... vt_ l, v k (=v). Suppose P is not 
monotonic with respect to d. Let v i be the first vertex of P such that [Vi_lVi] is not mo- 
notonic with respect to d. Since [vi_ 1 vi] is not monotonic with respect to d, we con- 
clude that v i must be contained in the closure of h;  . Since v i is not a local minimum, 
and T is acyclic, there must exist a vertex vj in EA(~ i) different from v i_ l, such that vj 
is contained in h v . Similarly, since vj is not a local minimum, there must exist a v m 
in EA(vj) different from vj, such that v m is contained in h~ . By continuing this ar- 
gument, it follows that since there are only a finite number df vert+ices in T, there must 
be a vertex v t such that EA(vt) is contained in the closure of  hv, , contradicting the 
fact that no vertex of T is a local minimum. 

Suppose we are given a tree T, a root r of T and a direction d and want to determine 
whether T is monotonic with respect to d. By Lemma 4.5, since r is the only proper local 
minimum and no other vertex is a local minimum with respect to d, the direction d cannot 
be contained in the closure of MD(v)  for all vertices of T other than the root. Since MD(v)  
is an intersection of  half-spaces, determining whether or not a direction d is contained in 
MD(v)  can be done in O(IM(v)l) time. But O(IM(v)l) is O(d(v)) where d(v) is the degree of  
v in the tree T. Therefore, since the sum of the degrees of the vertices of  a tree is linear in 
the number of  vertices of the tree, we conclude that in O(n) time where n is the number of  
vertices of  T, we can determine if a rooted tree is monotonic in a given direction d. 

Theorem 4.6: Given a rooted tree T, and a direction d, one can decide in O(n) t ime i f  T is 

monotonic  with respect  to d. 

Suppose next that the root of the tree is no longer specified. Then, to determine if T 
is monotonic in direction d, we must first find a root. By Lemma 4.5, the root must be the 
only proper local minimum and no other vertex is a local minimum. Therefore, there must 
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exist exactly one vertex r of T such that d is contained in MD(r) ,  which becomes the root. 
All  other vertices v of  T must have the property that d is not in the closure of MD(v) .  Again 
this can be determined in linear time. Therefore, we conclude with the following. 

T h e o r e m  4.7: Given an unrooted tree T, and a direction d, one can decide in O(n) t ime 
where  n is the number  o f  vertices ofT,  i f  there exists a root r o f  T such that T is monotonic  
with respect  to d. 

Before continuing, we need a few more preliminaries. Instead of representing all di- 
rections in 3-space by the sphere of directions S 2, we will represent all directions in E 3 by 
points on the surface of  the axis-parallel cube A C  centered at the origin O and with edge 
length 2. A point p on A C  represents the direction Op. Although this representation is not 
standard, it will simplify many of the algorithms to follow. 

Now, suppose that the root r of Tis  specified but the direction is not. For T to  be mo- 
notonic in some direction d, we see that d must be in MD(r)  but outside MD(v)  for all ver- 
tices v of T. This problem is in fact as difficult as the general problem where given an un- 
rooted tree 7", find all possible roots and directions for which T is monotonic. As such we 
will present the solution to the general problem below. 

The intersection of MD(v)  and A C  represents the set of directions for which v is a 
proper local minimum. Since MD(v)  is the intersection of  a set of  half-spaces, the intersec- 
tion o f  MD(v )  with a facet F of  A C  is either empty, the facet itself, or a convex polygon. 
For each facet F i o f  A C  (1 < i < 6) and each vertex Vj of T(1 < j  < n), we compute the in- 
tersection I(i,j) = MD(vj)  ~ F i. On each facet F i, notice that the set I i= {l(i,j) I 1 <_j <_ n} 
is s imply a collection of convex polygons. This collection of polygons has the following 
property. If  a point p ~ F i is contained in the interior of k polygons of the set I i, then there 
are k vertices of T that are local minima with respect to the direction Op and each of the 
vertices that are proper local minima is identified by the polygon which contains p. That is, 
i f p  is contained in polygon I(i,3) then vertex v 3 is a proper local minimum with respect to 
direction Op. Therefore, to determine if there are any directions with respect to which T is 
monotonic, we want to determine if there are any regions in each facet F i (1 <_ i <_ 6) that 
are covered by only one polygon of the set I i (1 <- i <_ 6). In fact, we want to find all regions 
that are covered by only one polygon. This set of regions represents the set of  all the direc- 
tions and roots from which T is monotonic. 

LetAi  represent the subdivision induced on facet F i by the set of polygons I i. This sub- 
division can be computed deterministically in O(n log n + t) time where t is the total number 
of intersection points of all polygons in I i. The complexity of A i is O(n2). Consider the 
graph G i which has a node for every cell of A i, and an edge between two nodes if the cor- 
responding cells are incident to the same edge o f A  i. The graph G i has O(n 2) nodes and edg- 
es. Start at any node a I of G i and compute in O(n) time how many polygons of  I i cover it. 
Store this number with a 1. Start from a 1 with a depth first search. Every edge (al, am) of G i 
we traverse corresponds to going inside or outside a polygon of  I i, in which case we take 
the number of a I and add or subtract one from it and assign this number to am. Thus the 
whole process of  assigning values to nodes of G i can be done in O(n 2) time. Let M i repre- 
sent the set of nodes with the minimum number assigned to it. If this number is one, then 
each of  the cells represented by a node in M i represents a set of  directions and a root from 
which T is monotonic. The root of T is specified by the vertex generating the convex poly- 
gon covering the cell. 
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Theorem 4.8: In O(n 2) time, we can determine all directions for which T is monotonic. 

Consider now the problem of determining the monotonicity of a simple polygon in 
E 3. We begin with a few definitions. A simple polygon in E 3 is a geometric graph that is a 
cycle. A simple polygon P is monotonic in direction d provided there exist two vertices u,v 
of P such that both paths from u to v are monotonic in direction d. 

The characterization of monotonicity of simple polygons in E 3 is similar to that of 
trees and therefore the solution for trees is applicable in this case. Therefore, we conclude 
with the following. 

Theorem 4.9: Given a simple polygon P in E 3 and a direction d, in O(n) time it can be 
determined if P is monotonic with respect to d. 

Theorem 4.10: Given a simple polygon P in E 3, in O(n 2) time, we can determine all the 
directions with respect to which P is monotonic. 

5. Conclusion 
Our results on regular and minimum-crossing projections of line segments have im- 

mediate corollaries for polygonal chains, polygons, trees and more general geometric 
graphs in 3-D since these are all special cases of sets of line segments. Our results also have 
application to graph drawing for knot-theorists. Let K be a knot with n vertices. To study 
the knot's combinatorial properties, knot theorists obtain a planar graph G called the dia- 
gram of K by a regular projection of K. Many of their algorithms are applied to G and there- 
fore their time complexity depends on the space complexity of G. By combining our algo- 
rithms we can obtain regular projections with the minimum number of crossings thereby 
minimizing the time complexity of their algorithms. 
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