
On the Complexity of Recognizing Intersection 
and Touching Graphs of Disks 

Heinz Breu* and David G. Kirkpatrick** 
Department of Computer  Science 

University of British Columbia 
Vancouver, British Columbia V6T 1Z4 

CANADA 

Abst rac t .  Disk intersection (respectively, touching) graphs are the in- 
tersection graphs of closed disks in the plane whose interiors may (re- 
spectively, may not) overlap. In a previous paper [BK93], we showed 
that the recognition problem for unit disk intersection graphs (i.e. inter- 
section graphs of unit disks) is NP-hard. That proof is easily modified 
to apply to unit disk touching graphs as well. In this paper, we show 
how to generalize our earlier construction to accomodate disks whose 
size may differ. In particular, we prove that the recognition problems 
for both bounded-ratio disk intersection graphs and bounded-ratio disk 
touching graphs are also NP-hard. (By bounded-ratio we refer to the 
natural generalization of the unit constraint in which the radius ratio of 
the largest to smallest permissible disk is bounded by some fixed con- 
stant.) The latter result contrasts with the fact that the disk touching 
graphs (of unconstrained ratio) are precisely the planar graphs, and are 
hence polynomial time recognizable. The recognition problem for disk 
intersection graphs (of unconstrained ratio) has recently been shown to 
be NP-hard as well [Kra95]. 

1 I n t r o d u c t i o n  

Families of graphs that  have realizations as intersection graphs of restricted 
geometric objects in the plane have at tracted the attention of researchers with 
interests in pure and computational graph theory as well as computational geom- 
etry and complexity theory. Issues include the recognition, geometric realization 
(layout), non-geometric characterization, application (including the modeling of 
communication and visibility problems) and algorithmic exploitation (for prob- 
lems that  appear to be intractable for general graphs) of such graphs. 

In several well-studied cases (eg. interval graphs and permutation graphs 
[BL76, Spi85]) the recognition problem is solvable in polynomial time. In other 
situations (such as the intersection graphs of arbitrary curves in the plane [Kra91] 
or even line segments restricted to two or more slopes [Kra94]) the recognition 
problem is NP-hard .  This paper addresses the case in which the objects are all 
closed disks. 
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A disk intersection graph G is the intersection graph of a set of closed disks 
in the plane. That is, each vertex of G corresponds to a disk in the plane, and 
two vertices are adjacent in G if and only if the corresponding disks intersect. 
The set of disks is said to realize the graph. 

Note that two disks intersect if and only if the distance between their centers 
is at most the sum of their radii. Therefore, disk graphs can be realized equally 
well as a set of weighted points in the plane; two vertices are adjacent in the 
graph exactly when the Euclidean distance between their associated points is at 
most the sum of the associated weights. 

A disk touching graph G is the intersection graph of a set of closed disks in 
the plane whose interiors are constrained to be disjoint. Thus, G is realized by a 
set of interior-disjoint disks, where two disks touch (have a common boundary 
point) if and only if the associated vertices are adjacent in G. 

If all disks have the same size they are said to realize a unit disk intersection 
graph or unit disk touching graph. Clearly, not every disk intersection graph or 
disk touching graph has a unit realization. For example, every star Kl,t is a disk 
touching graph, but only those with t < 6 have realizations as disk intersection 
graphs. (Note that the actual unit of size is not critical, since a set of disks 
realize the same graph even if the coordinate system is scaled by any convenient 
amount.) 

I n  addition to their intrinsic interest as geometric graphs, there are sev- 
eral motivations for studying disk intersection and touching graphs. The for- 
mer provide a natural two-dimensional generalization of interval graphs (cf. 
[FG65, Rob68]), for which a great deal is known (for example, polynomial time 
recognition, efficient algorithms for problems that are NP-hard in general, and 
efficient approximation algorithms). In addition, disk intersection graphs (or 
their unit restriction) have been used to model several physical problems, for 
example radio frequency assignment [Hal80] and ship-to-ship communications 
(attributed to Marc Lipman by [Rob91]). They have also been used as test cases 
for heuristic algorithms designed for arbitrary graphs [JAMS91]. More applica- 
tions are described by [CCJ90] and [MHR92]. Disk touching graphs (also known 
as disk packing graphs) play an important role in the construction of high reso- 
lution embeddings of planar graphs IMP92]. Unit disk touching graphs can also 
be seen as a natural generalization of grid graphs [BC87] (in which the disks are 
constrained to be centred at integer grid points). 

In a previous paper [BK93] the problem of determining if a given graph is 
a unit disk intersection graph (equivalently, the problem of determining if the 
sphericity (cf. [Hav82a, Fis83]) of a graph is less than or equal to two) was 
shown to be NP-hard. This answered an open question mentioned in [CCJ90] 
and [MHR92]. The reduction can be modified without difficulty to prove that 
the recognition of unit touching graphs is also NP-hard. 

In this paper, we show how to generalize our construction presented in [BK93] 
to accomodate disks whose size may differ. In particular, we prove that the recog- 
nition problems for both bounded-ratio disk intersection graphs and bounded- 
ratio disk touching graphs are also NP-hard. More formally, for every p > 1, we 
define the following: 
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p - B O U N D E D  DISK I N T E R S E C T I O N  G R A P H  R E C O G N I T I O N  
INSTANCE: Graph G - (V, E).  
QUESTION: Does G have a realization as the intersection graph of a set of 

disks, whose radii fall in the range [1, p]. 

p - B O U N D E D  DISK T O U C H I N G  G R A P H  R E C O G N I T I O N  
INSTANCE: Graph  G = (V, E). 
QUESTION: Does G have a realization as the touching graph of a set of disks, 

whose radii fall in the range [1, p]. 

Our main results are the following: 

Theorem 1. p-BO UNDED DISK INTERSECTION GRAPH RECOGNITION 
is NP-hard, for every fixed p > 1. 

T h e o r e m  2. p-BOUNDED DISK TOUCHING GRAPH RECOGNITION is NP.  
hard, for every fixed p > 1. 

It is interesting to note that  the unconstrained DISK TOUCHING GRAPH 
RECOGNITION problem (equivalently, the or-BOUNDED DISK TOUCHING 
GRAPH RECOGNITION problem) has a familiar polynomial time solution by 
virtue of the fact 3 that  a graph is an (unconstrained) disk touching graph if and 
only if it is planar. On the other hand, the unconstrained DISK INTERSEC- 
TION GRAPH RECOGNITION problem remains NP-ha rd  [Kra95]. 

As indicated previously, our proofs are similar in form to that  presented in 
the unit case. The next section recalls the essential structure of our NP-hardness  
reduction. Section 3 sets out some properties of disk packings (specifically, re- 
lating the number of disks in a given packing to the size of its boundary).  These 
properties are used in Section 4 to describe the components of a generic reduction 
from a variant of SATISFIABILITY to both of the problems described above. 
Section 5 offers some concluding remarks. 

2 Overview of reduct ion for unit  disk graphs 

Our proof (cf. [BK93]) of the NP-hardness  of the UNIT DISK INTERSEC- 
TION GRAPH RECOGNITION problem is a reduction from a variant of CNF 
SATISFIABILITY. Specifically, we show that  every conjunctive normal form 
Boolean formula ~', in which every clause contains at most three literals and 
every variable appears in at most three clauses, can be transformed into a graph 
G y  with the property that  G y  is a unit disk intersection graph if and only if .T 
is satisfiable. 

This result, frequently attributed to W.P. Thurston, was evidently first discovered 
in 1935 by P. goebe (cf. [Sac94]) 
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This transformation proceeds in three stages. We begin by defining the bi- 
partite graph G~: AT determined by the literal-clause incidence relation in ~'. It 
is straightforward to see that ~c is satisfiable if and only if the edges of G~ AT can 
be oriented so as to satisfy certain out- and in-degree constraints at the clause 
and literal vertices (essentially an edge is oriented from a clause c to a literal u in 
c if u is "chosen" to satisfy c). Next it is shown that  the graph G~ AT can be em- 
bedded on a grid without overlapping edges (here we exploit the restricted form 
of the input formula; in fact, even edge crossings can be avoided by starting with 
a more restrictive--yet still NP-hard--var iant  of SATISFIABILITY [Kra95].) 
Edges of the embedded G sAT can be viewed as a sequence of unit-length grid 
segments. Hence the entire embedded graph G~: AT can be described as a con- 
glomerate of fixed sized modules (including edge segments and clause and literal 
junctions). The orientability of G~ AT is easily recast in terms of orientations of 
these modules. Finally, we show how to realize each of these modules by a small 
unit disk intersection graph whose several feasible realizations reflect the several 
permissible orientations of the corresponding module. 

The component unit disk intersection graphs are themselves composed of 
simpler pieces called cages. A cage is simply a chordless cycle. Since a cage is 
realized as a ring of connected disks, every cage has a fixed capacity (informally, 
the maximum number of disjoint disks that  can be packed into the interior of 
some realization). If two cages share a sequence of three of more vertices on their 
boundary and are realized with neither cage embedded inside the other (as will 
always be the case), then any connected subgraph attached to one or more of the 
interior vertices of this sequence must be entirely embedded in one or other of 
the two cages. (We refer to such a subgraph in the context of its associated cages 
as a flipper.) This is the mechanism used both to express binary "choices" in 
the modules and, in the event that  a cage does not have the residual capacity to 
host one of its incident flippers due to earlier "choices", to propagate "choices". 

Most of the technical details of the proof concern the construction of networks 
of cages and flippers that  permit disk realizations of all and only the desired 
forms. Since the desired realizations are all achieved with adjacent cage vertices 
at unit distance (i.e with the corresponding disks merely touching), and the 
impossibility of undesired realizations is based on capacity arguments, the proof 
is easily adapted to apply to unit disk touching graph recognition as well. An 
extension of the proof to the bounded-ratio problems requires a more careful and 
general treatment of our lowest level building blocks, cages and flippers. This is 
taken up in the next section. 

3 H e x a g o n  p a c k i n g s  

Our reduction from CNF-SATISFIABILITY to the recognition problems for 
bounded:ratio disk intersection and touching graphs is, in fact, slightly simpler 
than its precurser in that  all of the constituent cages are the same size (some 
sufficiently large multiple of six, dependent in part on the value p) and all are 
realizable (when the given formula is satisfiable) as hexagonal chains of touching 
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disks whose centres lie on a regular hexagon. (We refer to the latter as a hexagonal 
realization of the cage.) 

This uniformity implies that  our entire construction, at least to the level of 
detail of cages, respects an underlying hexagonal grid. This substantially simpli- 
fies the issues of fabricating and inter-connecting modules. Of course, as before, 
we must argue that  the realizations that  we wish to consider are, up to topo- 
logical equivalence, the only possible realizations. Here we rely on arguments 
concerning the capacity of cages which, unlike those in our earlier proof, can be 
arbitrarily large. The hexagonal capacity of a cage is t h e  maximum number of 
interior-disjoint unit disks that  can be packed into the interior of a hexagonal 
realization of the cage. The unconstrained capacity of a cage is the maximum 
number of interior-disjoint disks that  can be packed into the interior of any re- 
alization of the cage. (Note that  in both cases the maximum is achieved by a 
realization of the cage in which adjacent vertices touch only.) Our main tool for 
arguing about the unrealizability of certain embeddings is the following: 

L e m m a 3 .  As the size of a cage C increases, the ratio of its unconstrained 
capacity to its hexagonal capacity approaches 2x/~/~r (~ 1.103). 

Proof. The realization of a cage C by a set of maximum-sized touching disks all 
of whose centres are co-circular clearly has maximum internal area, among all 
disk intersection realizations of C. It follows that  as the size of C increases, the 
ratio of the unconstrained capacity to the hexagonal capacity of C approaches 
the ratio of the area of a circle to the area of a regular hexagon with the same 
circumference. 

C o r o l l a r y  4. For all sufficiently large cages C, embeddings of C containing more 
interior-disjoint disks than 2x/3/~r times the hexagonal capacity of C, are unre- 
alizable. 

In our constructions cages are joined at their corners; specifically, any corner 
vertex and its two adjacent vertices may be shared by two (otherwise disjoint) 
cages. In such a situation the shared corner vertex cannot respect the hexagonal 
realization of both cages. In general, this corner vertex is the at tachment point 
for a subgraph (which we refer to as a flipper). In any realization the flipper is 
embedded entirely inside one or other of the two cages. We refer to the number 
of vertices in the flipper (in the case of disk touching graphs) or the number 
of independent vertices in the flipper (in the case of disk intersection graphs) 
expressed as a fraction 4 of the hexagonal capacity of the cage, as its size. Figure 
1 illustrates 5 a pair of joined cages that  share a flipper of size 1. This shared 
flipper is shown embedded in the right cage. 

Typically, a cage may have two or more neighbouring cages, and hence several 
incident flippers. By Corollary 4, any subset of flippers whose total size exceeds 

4 More precisely, we mean the fraction achieved asymptotically as the size of cages 
increase. 

5 This and subsequent illustrations apply to disk touching graphs. The modifications 
for disk intersection graphs are straightforward (cf. [Bre95]). 
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Fig. 1. A pair of joined cages with one shared flipper (and four other flippers). 

2V~/Tr cannot be simultaneously embedded inside any realization of their com- 
mon cage. Thus, for example, it is impossible for the left cage in Figure 1 to 
house the shared flipper (of size 1) in addition to any of its resident flippers (of 
sizes 1/4 and 1/2). Similarly, the right cage cannot contain both of its incident 
flippers (of size 1); one of these is shown displaced below the cage. 

In general, flippers are constructed from a single connected portion of the 
hexagonal grid. (They are depicted as such in all of our figures.) The shapes of 
specific flippers are chosen to permit the simultaneous internal realization (in 
a hexagonal realization of the cage) of any subset of flippers whose total size 
does not exceed 1. For example, the left cage in Figure 1 has three internally 
embedded flippers, one of size 1/2 and two of size 1/4. 

4 M o d u l e s  

We now have in place the tools with which we can specify and verify our general 
construction. We begin by describing the basic building blocks (modules). Each 
module has up to four designated terminals (a cage corner together with its 
incident flipper). Modules are connected by identifying some pairs of terminals. 
We conclude by describing how modules are combined to mimic the bipartite 
graph orientability problem described in Section 2. 

4.1 C lause  m o d u l e s  

A clause module is designed to model a clause vertex in the graph G~ AT with 
three incident edges at least one of which must be oriented away from the ver- 
tex (towards a "chosen" literal). The module, in one of its feasible hexagonal 
realizations, is illustrated in Figure 2 below. It is easy to verify that  all seven 
embeddings, in which one or more of the flippers incident on vertices T, B or 
R are embedded externally, have hexagonal realizations. By Corollary 4, the 
remaining case, in which all flippers are embedded internally, is unrealizable. 
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Fig .  2. Clause module with terminals T, B and R. 

""... 

4.2 C o n s i s t e n c y  c h e c k i n g  m o d u l e s  

In a satisfying truth assignment for ~r a variable or its negation (but not both) 
can be chosen to satisfy up to three clauses. This is modelled, in the graph G SAT ~- , 
by constraining the edges incident with the vertex associated with each variable 
or its negation to all be oriented away from the vertex. Thus, with each variable 
v we associate a module formed from two submodules, one for each of the two 
literals v and ~. The submodule for the positive literal is depicted in one of its 
feasible realizations in Figure 3. Construct the submodule for the negative lit- 
eral by rotating Figure 3 by 180 degrees. We can then construct the module for 
the variable by identifying terminal R with the rotated copy of terminal R. The 
flipper on terminal R in Figure 3 may be embedded outside the submodule, as 
illustrated (in which case it must be embedded inside the submodule correspond- 
ing to the negative literal). Alternatively, the flipper may be embedded inside 
the submodule, in which case it easy to see (by Corollary 4) that the flippers on 
terminals T, B, and L must be embedded outside the submodule. 

4 .3  C o n n e c t o r  m o d u l e s  

The "choices" associated with clause modules need to be propagated to the 
appropriate consistency checking modules. This propagation can be achieved 
through the use of connector modules, built by chaining together cages where 
each successive pair has a shared (unit) flipper. Figure 4 illustrates one realization 
of a typical connector module. It is easy to see that any embedding of the 
module, in which at least one of the flippers incident on terminals L and R is 
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Fig. 3. Positive literal submodule with terminals L, R, T, and B. 

embedded externally, has a hexagonal realization. Corollary 4 guarantees that 
the embedding with both of these flippers internal is unrealizable. 

4.4 Crossover  m o d u l e s  

As we have described things, connector modules alone are not sufficient to model 
the interconnection of clause and consistency checking modules. Since the graph 
G~: AT, under our assumptions about ~ ,  is not necessarily planar, the intercon- 
nections may be forced to cross. One way to avoid this is to restrict attention to 
formulas :~ for which the associated graph G sAT is planar. (SATISFIABtLITY 
restricted to this class of formulas is known to remain NP-hard [Kra94].) Alter- 
natively, we can formulate a crossover module. One realization of such a module 
is described Figure 5. It is a simple exercise to confirm, using Corollary 4, that 
any embedding of this module, in which the flippers incident on both L and R 
or these on both T and B are embedded internally, is unrealizable. Similarly, all 
other embeddings of these flippers have hexagonal realizations. 

5 Conclusions 

We showed, in the preceeding section, how to construct modules suitable for 
implementing the reduction of the orientability problem for graphs G sA'2 to 
the realizability problem for bounded ratio disk intersection or touching graphs. 
(One of the interesting features of this proof is the fact that it depends very 
little---at least at the level of abstraction that we have been able to describe it 
here---on the notion of contact.) 
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Fig. 4. Connector module with terminals L and R. 

Although our proof follows the same general approach as that used in es- 
tablishing the NP-hardness of the unit disk intersection (and touching) graph 
recognition problems, it differs in several important respects. Two of these, 
specifically the uniformity of our cages, and the reliance on asymptotic pack- 
ing capacity bounds rather than properties of particular small configurations of 
disks, serve to simplify as well as generalize the reduction. This generalization 
can be exploited to prove analogous results for higher dimensions, for objects 
others than disks (eg. squares), and for certain grid-constrained versions of our 
problems [Bre95]. Although grid-constrained versions of our recognition prob- 
lems (like grid graph recognition [BC87, Gr~i95]) are in fact NP-complete, it is 
not clear that the unconstrained versions are in NP.  (Membership in P S P A C E  
follows directly from results of Canny [Can88].) 

In the case of disk touching graphs, the result in this paper depends critically 
on the specified bound on disk ratios. Indeed, as noted previously, in the absence 
of such a bound the recognition problem is straightforward. Our result says not 
only that the use of arbitrarily large disks is essential to the realization of planar 
graphs as touching graphs of disks (this is clear from degree considerations alone; 
in fact it follows from a result of [MP92] that an exponential--in the size of the 
graph--sized ratio may be required to realize some graphs), but that the need 
for large disks cannot be determined by efficiently checked conditions (unless P 
= NP).  Our techniques do not allow us to address the case of non-constant but 
sub-exponential ratio bounds. 
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Fig. 5. Crossover module with terminals L, R, T, and B. 
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