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1 I n t r o d u c t i o n  

Let G = (V, E) be a directed acyclic graph (dag). A leveling of G is a function 
lev : V -~ Z mapping the nodes of G to integers such that lev(v) = lev(u) + 1 
for all (u, v) 6 E. G is a leveled dag if it has a leveling. If lev(v) = j ,  then v is 
a level-j node. Let Ej denote the set of arcs in E from level-j nodes to level- 
(j + 1) nodes. Without loss of generality, we may assume that the image of lev 
is {1 ,2 , . . . ,m} for some m. Let Vj = lev- l ( j )  denote the set of level-j nodes. 
Each Vj is a level of G. The leveling partitions V into the levels V1, V z , . . . ,  Vm, 
and according we denote G as G = (V1,Vz,... ,Vm;E).  

Let gj denote the vertical line in the Cartesian plane ej = {(j,y) I Y 6 R}, 
where R is the set of reals. Suppose G has a planar embedding in which all nodes 
in Vj are placed on gj and each arc in Ej, where 1 < j < m, is drawn as a straight 
line segment between lines l j  and s Then this planar embedding is called a 
directed leveled-planar embedding of G. Figure 1 shows a directed leveled-planar 
embedding of a dag. A dag is called a leveled-planar dag if it has a directed 
leveled-planar embedding. 

In this paper we present a linear time algorithm for the problem of determin- 
ing if a given dag has a directed leveled-planar embedding. Our algorithm uses 
a variation of the PQ-tree data structure introduced by Booth and Lueker [2]. 
One motivation for our algorithm is that it can be extended to recognize 1-queue 
dags, thus answering an open question in [6]. Combinatorial and algorithmic re- 
sults related to queue layouts of dags and posets can be found in [4, 7, 5]. Our 
algorithms also contrasts leveled-planar undirected graphs and leveled-planar 
dags, since the problem of recognizing leveled-planar graphs has been shown to 
be NP-complete by Heath and Rosenberg [8]. Another motivation comes from 
the importance of the above problem in the area of graph drawing. Our result 
extends the work of Di Battista and Nardelli [1], Chandramouli and Diwan [3], 
and Hutton and Lubiw [9]. These authors assume solve the problem assuming 
certain restrictions on the given dag and leave the general problem open. 

The organization of the rest of the paper is as follows. Section 2 discusses 
the nature of the problem and outlines our approach. Section 3 defines the data 
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Fig. 1. A leveled-planar dag. 

structures (PQ-trees and collections) that we need to represent sets of permu- 
tations of nodes in a particular level. Section 4 defines the operations we use 
to restrict or combine sets of permutations. Section 5 presents our linear time 
algorithm for recognizing leveled-planar dags. 

2 T h e  P r o b l e m  

It is easy to check whether a dag is leveled in linear time. Therefore, without 
loss of generality, we may assume that G = (VI, V2,... ,  V m ; E )  is a connected, 
leveled dag, and we wish to determine whether G has a directed leveled-planar 
embedding. 

Suppose G has a directed leveled-planar embedding C. For each j,  where 
1 < j < m, 6 determines a total order <j on Vj given by the bottom to top 
order of the nodes on gj. Conversely, if a total order _<j on Vj is given for each 
j,  then it is easy to check whether those total orders witness a directed leveled- 
planar embedding of G. It suffices to check that there are no two arcs (u, v) and 
(x, y) such that lev(u) = lev(x) = j ,  u <j  x,  and y <j+l v. In Figure 1, the total 
orders are given by 1 <1 7, 2 <2 4 <2 6 <2 8, and 3 <3 5 <3 9. 

The problem of recognizing whether a connected leveled dag G is a leveled- 
planar dag is then equivalent to determining whether there are total orders on 
all the levels that are witness to a leveled-planar embedding of G. Let Gj denote 
the subgraph of G induced by V1 U V2 U ..- U Vj. (Note that, unlike G, Gj 
is not necessarily connected.) Each total order on Vj can be thought of as a 
permutation on Vj. Moreover, for each j ,  there is a set of permutations/-/j that 
contains exactly the total orders on Vj that occur in witnesses to directed leveled- 
planar embeddings of Gj. So to recognize whether G is a leveled-planar dag, we 
need only compute Hm and check that it is nonempty. Our basic approach to 
doing this efficiently is to perform a left-to-right sweep processing the levels in 
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the order V1, V2,... ,  Vm. For each level Vj, we say that a permutation 7r of the 
nodes in V 3. is a witness to a directed leveled-planar embedding of Gj if the nodes 
in Vj appear in a bottom to top order on line s according to ~r in some directed 
leveled-planar embedding of Gj. For each level ~ ,  the algorithm constructs 
a representation of all permutations on Vj that are witness to some directed 
leveled-planar embedding of Gj. The data structure that we use for maintaining 
sets of permutations is called a collection. So after processing 1/1, V2,...,  Vj, we 
have a collection Cj. The algorithm then processes Vj+I and uses Cj to construct 
the next collection Cj+I. 

3 P Q - t r e e s  a n d  C o l l e c t i o n s  

In order to define the collection data structure precisely, we need the PQ-tree 
data structure of Booth and Lueker [2] to represent sets of permutations. A PQ- 
tree T for a set S is a rooted tree that contains three types of nodes: leaves, 
P-nodes, and Q-nodes. The leaves in T are in one-one correspondence with the 
elements of S. The set S is called the yield of T, denoted YIELD(T). The PQ- 
tree T represents permutations of YIELD(T) according to the following rules: 
(a) The children of a P-node may be permuted arbitrarily, (b) The children of 
a Q-node must occur in the given order or in the reverse order. As a special 
case, the empty PQ-tree e represents the empty set of permutations. The set of 
permutations represented by T is denoted by PERM(T). The yield YIELD(r) of 
a node r in T is the yield of the subtree rooted at r. Without loss of generality, 
we may assume that every P-node has 3 or more children and that every Q-node 
has 2 or more children. A collection is a finite set of PQ-trees with pairwise 
disjoint yields. 

For any PQ-tree T and connected leveled-planar dag F with k levels, for 
some k > 0, we say that T represents F if and only if PERM(T) is the set 
of all permutations of the level-k nodes in F that witness some leveled-planar 
embedding of F. For each level Vj, our algorithm maintains a collection Cj 
satisfying the property stated in the following theorem. 

Theo rem 1. For each j,  1 < j < m, and for each connected component F in 
Gj, there is a corresponding PQ-tree T[F] in Cj that represents F. 

Since G = G m  is connected, the above theorem implies that Crn contains a 
single PQ-tree T[G], that represents G. So C,n contains a non-empty PQ-tree 
if and only if G has a directed leveled-planar embedding. Thus the goal of our 
algorithm is to compute Crn. The proof of Theorem 1 is inductively established 
in the following description of the algorithm. 

The algorithm initializes C1 = {leaf v [ v e V1 }. Thus for j = 1 (the base 
case), the correspondence claimed in Theorem 1 is trivially true. The algorithm 
then proceeds to inductively construct 6'2, C3, . . . ,  C,n in that order. As an in- 
ductive hypothesis, we assume that Theorem 1 holds for some j > 1. 

In order to construct Cj+I from Cj, we assume that some information is 
maintained in each non-leaf node of a PQ-tree in Cj and one additional piece of 
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information is maintained at the root of a PQ-tree in Cj. Let F be any connected 
component of Gj. By the inductive hypothesis, T[F] is the PQ-tree in Cj that 
represents F. For any subset S of the set of nodes in ~ that belong to F, define 
MEETLEVEL(S) to be the greatest d < j such that V4,.. . ,  Vj. induces a dag in 
which all nodes of S occur in the same connected component. For example, in 
Figure 1, MEETLEVEL({3, 5}) = 1 and MEETLEVEL({5, 9}) = 2. Note that 
if ISI > 1, then MEETLEVEL(S) < j.  For a Q-node q in T[F] with ordered 
children rl, r2,. . . ,  rt, maintain in node q integers denoted ML(r~,ri+l), where 
1 _< i < t, that satisfy ML(ri, r~+l) = MEETLEVEL(YIELD(r~)UYIELD(ri+I)). 
For a P-node p in T[F], maintain in node p a single integer denoted ML(p) that 
satisfies 

ML(p) = MEETLEVEL(yield(p)). 

Let S be any subset of the set of nodes in Vj that belong to F. Now define 
LEFTLEVEL(S) to be the smallest d such that F contains a node in Vd. We 
always have LEFTLEVEL(S) _< MEETLEVEL(S) and inequality is possible. 
At the root of T[F], maintain a single integer denoted LL(T[F]) satisfying 

LL(T[F]) = LEFTLEVEL(YIELD(T[F])). 

When our algorithm computes the collection Cj+I from Cj, it also maintains the 
values of ML and LL in the PQ-trees in Cj+I. Note that since every PQ-tree in 
C1 is a leaf, ML values are not defined, while LL(T) = 1 for each tree T E C1. 

4 O p e r a t i o n s  

We have described our data structure and now describe two simple operations 
on PQ-trees that serve as building blocks of the algorithm that constructs Cj+I 
from Cj. 

1. ISOLATE(T,x), where T is a PQ-tree and x E YIELD(T). This operation 
returns a PQ-tree T' such that (a) The root of T' is a Q-.node with x as its 
first or last child. (b) PERM(T') is the subset of permutations in PERM(T) 
in which x is either the first or the last element. If YIELD(T) = {x}, then 
ISOLATE(T, x) returns a PQ-tree that is just the single leaf x. If there is 
no permutation in PERM(T) that has x as its first or last element, then 
ISOLATE(T,x) returns e. 

2. IDENTIFY(T, x, y, z), where T is a PQ-tree, x,y  e YIELD(T), x # y, and 
z • YIELD(T). Let P be the subset of permutations in PERM(T) in which 
x and y appear consecutively. Let P '  be obtained from P as follows: If 
P contains the permutation a , . . . , b , x , y , c , . . .  ,d, then put in P'  the per- 
mutation a , . . . ,  b, z, c , . . . ,  d, obtained by replacing x, y by z. The operation 
IDENTIFY(T, x, y, z) returns a PQ-tree T ~ such that PERM(T') = P' .  Note 
that P'  may be empty, in which case T' = e. 

The operation ISOLATE(T, x) is a special case of Booth and Lueker's RE- 
DUCE operation and can be implemented as follows. Let r be the root of T. If 
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x -- r, then ISOLATE(T,  x) simply returns T. Otherwise, there are two cases 
based on whether x is a child of r or not. 
B a s e  Case :  x is a child of r. If  r is a Q-node and x is not its first or last 
child, then there are no permutat ions  in P E R M ( T )  with x at the end or at  the 
beginning, so the operat ion returns e. If  r is a Q-node and x is either the first 
or the last child of r,  then nothing needs to be done and the operation simply 
returns T. If  r is a P-node, then T is t ransformed as shown in Figure 2. 

I 

1 k 
1 

I 

k 

Fig. 2. The transformation of T in the base case of ISOLATE(T, x). 

I n d u c t i v e  Case :  x is not a child of r. Let T '  be the subtree rooted at  a 
child of r whose yield contains x. Let T "  = ISOLATE(T ' ,  x). If  T "  = e, then 
ISOLATE(T,  x) also returns e. Otherwise, replace T '  by T" .  The root of T "  is 
a Q-node with x as either its first or its last child. If r is a P-node, perform 
the t ransformation on T shown in Figure 3. If  r is a Q-node and T "  is not the 

z 
1 k k + l  j 

Fig. 3. The transformation of T in the inductive case of ISOLATE(T, x) when r is a 
P-node. 

first or the last child of r, then the algorithm returns e; otherwise, perform the 
t ransformation on T shown in Figure 4. The running t ime of ISOLATE(T,  x) is 
proport ional  to the depth of x in T. 

The operat ion IDENTIFY(T ,  x, y, z) can be implemented in the following 
four steps. 
S t e p  1. Locate r, the node in T tha t  is the least common ancestor of x and y. 
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Fig. 4. The transformation of T in the inductive case of ISOLATE(T, x) when r is a 
Q-node. 

S t e p  2. Let T1 and T2 be subtrees of T rooted at a children of r such tha t  
x ~ YIELD(T1) and y e YIELD(T2). Let T~ = ISOLATE(TI ,x )  and T~ = 
ISOLATE(T2,y). If  either T~ = e or T~ = e, then IDENTIFY(T,x,y,z) returns 
e. Otherwise, replace T1 by T~ and T2 by T~. The root of T~ (respectively, T~) is 
a Q-node with x (respectively, y) being the first or the last child of the root.  
S t e p  3. This step depends on whether r is a P-node or a Q-node. 

(a) r is a P-node. T is t ransformed as shown in Figure 5. 

~1 I~1 I \ ".  

x 1 k y k + l  j 

1 

k 1 = y k + l  j 

Fig. 5. The transformation of T in IDENTIFY(T, x, y, z) when r is a P-node. 
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(b) r is a Q-node. If the subtrees T1 and T~ are not adjacent children of r, then 
the operation returns e. Otherwise, T is transformed as shown in Figure 6. 

z b j y $ t 

I I 

1 w 

Fig. 6. The transformation of T in IDENTIFY(T, x, y, z) when r is a Q-node. 

Step 4. Leaf z replaces leaves x and y. 
The running time of IDENTIFY(T, x, y, z) is proportional to the sum of the 
depths of x and y in T. In the transformations described above we have ignored 
several special cases caused by the fact that a transformation might lead to 
the birth of a P-node with two children. Instead of dealing with these cases 
separately, we simply note that whenever this happens, the P-node is replaced 
by a Q-node. The operations ISOLATE and IDENTIFY also update ML and 
LL values. Details are omitted due to lack of space. 

5 Recognizing Leveled-Planar Dags 

We are now ready to describe how our algorithm constructs Cj+I from Cj. 
To understand the intuition behind the construction, imagine that through a 
sequence of simple operations (to be described later) dag Gj is transformed into 
dag Gj+I. This yields a sequence of dags H 1 , H 2 , . . . , H k  with Gj = /-/1 and 
Gj+I = Hk. Correspondingly, collection Cj is transformed into collection Cj+I 
via a sequence of operations that mimic those applied to Hs, 1 _< s < k. This 
yields a sequence of collections DI, D2, . . . , D~, where Cj = D1 and Cj+ I = Dk. 
In what follows, we show that the operation applied to Ds, for each s, 1 _< s < k, 
mimics the operation applied to /-/8 in such a way that the correspondence 
between Gj and Cj, claimed in the induction hypothesis, also exists between 
Gj+I and Cj+I. 

We use the following three operations to transform Gj into Gj+I: 
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/* Algorithm for transforming dag Gj into dag Gj+I */ 

H:=Gj; 

/* GROWTH PHASE */ 
for all connected components F in H do 

for all level-j nodes u in F do 
Yu := (v[u] [ (u,v) �9 Ej}; 
Replace F in H by GROW(F, u, N~); 

/* MERGE PHASE */ 
for all pairs of level-(j + 1) nodes (v[X], v[Y]) in H do 

if v[X] and v[Y] belong to the same connected component F then  
Replace F in H by MERGEI(F, v[X], v[Y], v[X, Y]) 

else if v[X] and v[Y] belong to components F1 and F2 then  
Replace F1 and F2 in H by MERGE2(F1, F2, v[X], v[Y], v[X, Y]); 

/* CLEANUP PHASE */ 
Relabel each node v[X] in H as v; 
Add all the level-(j + 1) sources in G to H; 

Gj+I:=H; 

Fig. 7. Transforming Gj into Gj+I 

1. GROW(F,u ,  S), where F is a connected, leveled-planar dag with k or k + 1 
levels, for some k _> 0, u is a level-j node in F,  and S is a set of nodes not 
in F.  The operation returns the dag obtained by adding arcs (u, v) for all 
v E S ,  toF.  

2. MERGEI(F,  u, v, w), where F is a connected, leveled-planar dag with k lev- 
els, for some k _ 0, u and v are distinct level-(j + 1) nodes in F ,  and w is a 
node not in F.  The operation returns the dag obtained by identifying nodes 
u and v in F and replacing the resulting node by w. 

3. MERGE2(F1,F2,u,v,w), where F1 and F2 are connected, leveled-planar 
dags, each with k levels, for some k >_ 0, u is a level-(j + 1) node in F1 
and v is a level-(j + 1) node in F2, and w is a node not in F1 or F2. The 
operation returns the dag obtained by identifying nodes u and v in F and 
replacing the resulting node by w. 

Figure 7 shows the algorithm that  uses the above operations to transform Gj into 
Gj+I.  In this algorithm, H is initialized to Gj and then transformed into Gj+I 
by repeatedly applying the three operations described above in three phases. In 
the GROWTH PHASE, to each level-j node in H with outdegree equal to d, d 
out-neighbors are attached. Thus after the GROWTH PHASE, each level-(j + 1) 
node v in G with p in-neighbors is represented by p copies in H,  each copy having 
in-degree equal to 1. Note that  these p copies have labels V[Ul], v[u2],.. ,  v[up], 
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Fig. 8. Illustration of the GROWTH PHASE. 

~ 9[8] ~ 9[8,6] ~ 9[s,6] 
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Fig. 9. Illustration of the MERGE PHASE. 

where Ul,U2,... ,up are the p in-neighbors of v in G. Figure 8 illustrates the 
GROWTH PHASE applied to G2, the subgraph of the dag in Figure 1, induced 
by the first two levels. 

We extend the v[u] notation to include v[X], where X is a sequence of distinct 
level-j nodes that are all adjacent to v; we think of X as a set of nodes, while 
v[X] is a single level-(j + 1) node that is adjacent to each u e X. In the MERGE 
PHASE, each pair of level-(j + 1) nodes (v[X], v[Y]), where X D Y = 0, is merged 
into a single node with label v[X, Y]. Note that v[X] and v[Y] may belong 
to the same connected component or to different connected components and 
accordingly the operations MERGE1 or MERGE2 are used. Figure 9 illustrates 
the MERGE PHASE applied to the dag resulting from the GROWTH PHASE 
shown in Figure 8. In the CLEANUP PHASE, each level-(j + 1) node in H with 
label v[X] is relabeled v so as to match its name in Gj+I. For example, the dag 
obtained after the MERGE PHASE in Figure 9 contains nodes 9[8, 6], 5[4, 6], 
and 3[2] which are relabeled 9, 5, and 3 in the CLEANUP PHASE. Finally level- 
(j + 1) sources in G are added to H. This completes the transformation of H 
into Gj+I. 
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Having described the sequence of operations that transforms Gj into Gj.+-I, 
we now describe the parallel sequence of operations that transforms Cj into Cj+I. 
As mentioned earlier, the operations on collections closely mimic the operations 
on dags and so corresponding to each of the operations GROW, MERGE1, and 
MERGE2 that operate on connected leveled-planar dags, we define the following 
three operations that operate on PQ-trees: 

1. GROW(T, u, S), where T is a P.Q-tree, u E YIELD(T), and SNYIELD(T) = 
0. 

2. MERGEI(T, u, v, w), where T is a PQ-tree, u,v E YIELD(T), and w ~g 
YIELD(T). 

3. MERGE2(T1,T2, u,v,w), where T1 and T~ are PQ-trees, u e YIELD(T1), 
v e YIELD(T2), and w f~ YIELD(T1) U YIELD(T2). 

Each of these operation returns a PQ-tree. To see how these operations 
are applied to collections, let us suppose that a collection D is initial- 
ized to Cj. Imagine that when F is replaced by GROW(F,u, Nu) in H 
in the GROWTH PHASE, the corresponding PQ-tree T[F] is replaced by 
GROW(T[F], u, N~) in D. Similarly, in the MERGE PHASE, when F is replaced 
by MERGEI(F, v[X], v[Y], v[X, Y]), then the corresponding PQ-tree T[F] is re- 
placed by the PQ-tree MERGEI(T[F], v[X], v[Y], v[X, Y]). Finally, when F1 and 
F2 are replaced by the dag 

MERGE2(F~, F2, v[X], v[Y], v[X, Y]), 

then the corresponding PQ-trees T[F1] and T[F2] are replaced by 

MERGE2(T[F1], T[F2], v[X], v[Y], v[X, Y]). 

Corresponding to the relabeling of the level-(j + 1) nodes in H in the CLEANUP 
PHASE, all the leaves of trees in D are similarly relabeled and corresponding to 
the addition of the level-(j + 1) sources to H, PQ-trees that just contain a leaf 
are added to D. This completes the construction of Cj+I. Thus the transforma- 
tion of Cj into Cj+I can also be viewed as proceeding in three distinct phases: 
GROWTH PHASE, MERGE PHASE, and CLEANUP PHASE. Our task now 
is to describe the three operations on PQ-trees mentioned above and to prove 
their correctness. 
1. GROW(T,  u, S). This operation returns a PQ-tree T' obtained from T as 
follows. If S = 0, then T' is obtained by deleting u from T. Otherwise, let 
S = {vl,v2,. . .  ,vk}, for some k _> 1. If k = 1, then T' is obtained by replacing 
u by the leaf vl. If k = 2, then T' is obtained by replacing u by a Q-node q 
whose children are the leaves vl and v2. Then the information ML(vl, v2) = j 
is inserted at q. If k > 2, then T' is obtained by replacing u by a P-node p 
whose children are the leaves vl, v2, . . . ,  vk. Then the information ML(p) = j is 
inserted at the new P-node. The operation leaves the LL value of T unchanged, 
that is, LL(T') = LL(T). The correctness of GROW(T, u, S) is embodied in the 
following lemma, which follows from the discussion. 



310 

L e m m a  2. After the GROWTH PHASE, for each connected component F in 
H,  there is a PQ-tree T[F] in D that represents F .  

2. M E R G E I ( T ,  u, v, w). This operation simply calls IDENTIFY(T, u, v, w) and 
returns the PQ-tree obtained. The correctness of MERGEI(T, u, v, w) is embod- 
ied in the following lemma. 

Lemraa 3. Suppose that F is a leveled-planar dag with j levels. Further suppose 
that T is a PQ-tree that represents F.  I / F  ~ = MERGEI(F, u, v, w) and T ~ = 
MERGEI(T, u, v, w), then T'  represents F.  

3. MERGE2(T1, T2, u, v, w). Without loss of generality, suppose that LL(T1) < 
LL(Tz). The trees T1 and Tz are merged in two steps. In the first step, the PQ-tree 
Tz is attached to T1 at an appropriate location. The resulting tree, Ts, contains 
the leaves u and v. In the second step, these two leaves in 2"3 axe identified into 
one leaf w using the operation IDENTIFY. The two steps axe discussed in detail 
below. 

Step 1. Attaching T2 to T1. Start with the leaf u in T1 and proceed upward in 
T1 until a node r ~ and its parent r are encountered such that: 

1. r is a P-node with ML(r) < LL(T2). T3 is obtained by attaching T2 as a 
child of r in T1. 

2. r is a Q-node with ordered children rl,r2, . . . .  rt, r ~ = rl, and ML(rx,r2) < 
LL(T2). T3 is obtained by replacing rl in TI with a Q-node q having two 
children, rl and the root of T2. The case where r ~ = rt and M L ( r t - l , r t )  < 
LL(T2) is symmetric. 

3. r is a Q-node with ordered children r l , r ~ , . . .  ,rt ,  r ~ = ri, for some i satisfying 
1 < i < t, and both ML(r~_l,ri) < LL(T2) and ML(ri,rt+l) < LL(Tz). T3 is 
obtained by replacing ri in TI with a Q-node q having two children, ri and 
and root of T2. 

4. r is a Q-node with children r l , r2 , . . .  ,rt, r I = ri, 1 < i < t, and 

M L ( r i - l , r i )  < LL(T2) < ML(ri, r~+i). 

T8 is obtained by attaching T2 as a child of r between ri-1 and ri. The case 
where 

ML(ri,ri+l) < LL(T2) < ML(ri-1, ri) 

is symmetric. 
5. r ~ is the root of T1. In this case, construct Ts by making its root a Q-node 

q with two children, r ~ and the root of Tz. 

Step 2. Identifying u and v in Tz. Return IDENTIFY(T3,  u, v, w). 
Steps 1 mad 2 described above also update ML and LL values. Details are not 
presented due to lack of space. The following lemma establishes the correctness 
of MERGE2(T1, Tz, u, v, w). 
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L e m m a 4 .  Suppose that F1 and F2 are connected leveled-planar dags and 
T1 and T2 are PQ-trees that represent F1 and F2 respectively. If F = 
MERGE2(F1, F2, u, v, w) and T = MERGE2(T1, T2, u, v, w), then T represents 
F. 

This completes the discussion of our algorithm and establishes this theorem. 

T h e o r e m  5. A leveled-planar dag can be recognized in linear time. 

The time complexity follows from an amortized analysis tha t  we sketch here. 
It suffices to show that  the time complexity of all the MEI~GE1 and MERGE2 
operations together is linear. Each arc in the dag G is allocated three credits; 
since G is planar, the total number of credits is linear. In MERGE1, there are 
two paths in the dag involved in forming a new face; since each arc is in two 
faces, two credits from each arc in the face pays for the MERGE1. In MERGE2, 
the work is proportional to the height of the shorter dag; there is always a path 
in the dag that  has a credit on each arc. We conclude that  the allocated credits 
are sufficient and that  the time complexity is linear. 
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