
Recognizing Leveled-Planar Dags in Linear
Time*

Lenwood S. Heath** and Sriram V. Pemmaraju***

1 I n t r o d u c t i o n

Let G = (V, E) be a directed acyclic graph (dag). A leveling of G is a function
lev : V -~ Z mapping the nodes of G to integers such that lev(v) = lev(u) + 1
for all (u, v) 6 E. G is a leveled dag if it has a leveling. If lev(v) = j , then v is
a level-j node. Let Ej denote the set of arcs in E from level-j nodes to level-
(j + 1) nodes. Without loss of generality, we may assume that the image of lev
is {1 ,2 , . . . ,m} for some m. Let Vj = lev- l (j) denote the set of level-j nodes.
Each Vj is a level of G. The leveling partitions V into the levels V1, V z , . . . , Vm,
and according we denote G as G = (V1,Vz,... ,Vm;E).

Let gj denote the vertical line in the Cartesian plane ej = {(j,y) I Y 6 R},
where R is the set of reals. Suppose G has a planar embedding in which all nodes
in Vj are placed on gj and each arc in Ej, where 1 < j < m, is drawn as a straight
line segment between lines l j and s Then this planar embedding is called a
directed leveled-planar embedding of G. Figure 1 shows a directed leveled-planar
embedding of a dag. A dag is called a leveled-planar dag if it has a directed
leveled-planar embedding.

In this paper we present a linear time algorithm for the problem of determin-
ing if a given dag has a directed leveled-planar embedding. Our algorithm uses
a variation of the PQ-tree data structure introduced by Booth and Lueker [2].
One motivation for our algorithm is that it can be extended to recognize 1-queue
dags, thus answering an open question in [6]. Combinatorial and algorithmic re-
sults related to queue layouts of dags and posets can be found in [4, 7, 5]. Our
algorithms also contrasts leveled-planar undirected graphs and leveled-planar
dags, since the problem of recognizing leveled-planar graphs has been shown to
be NP-complete by Heath and Rosenberg [8]. Another motivation comes from
the importance of the above problem in the area of graph drawing. Our result
extends the work of Di Battista and Nardelli [1], Chandramouli and Diwan [3],
and Hutton and Lubiw [9]. These authors assume solve the problem assuming
certain restrictions on the given dag and leave the general problem open.

The organization of the rest of the paper is as follows. Section 2 discusses
the nature of the problem and outlines our approach. Section 3 defines the data

* This research was partially supported by National Science Foundation Grant CCR-
9009953.

** Department of Computer Science, Virginia Tech, Blacksburg, VA 24061-0106,
heath@cs, yr. edu.

*** Department of Computer Science, University of Iowa, Iowa City, IA 52242-1316,
sriram@cs, uiowa, edu.

301

, I

i

el ~2 ~z

Fig. 1. A leveled-planar dag.

structures (PQ-trees and collections) that we need to represent sets of permu-
tations of nodes in a particular level. Section 4 defines the operations we use
to restrict or combine sets of permutations. Section 5 presents our linear time
algorithm for recognizing leveled-planar dags.

2 T h e P r o b l e m

It is easy to check whether a dag is leveled in linear time. Therefore, without
loss of generality, we may assume that G = (VI, V2,... , V m ; E) is a connected,
leveled dag, and we wish to determine whether G has a directed leveled-planar
embedding.

Suppose G has a directed leveled-planar embedding C. For each j, where
1 < j < m, 6 determines a total order <j on Vj given by the bottom to top
order of the nodes on gj. Conversely, if a total order _<j on Vj is given for each
j, then it is easy to check whether those total orders witness a directed leveled-
planar embedding of G. It suffices to check that there are no two arcs (u, v) and
(x, y) such that lev(u) = lev(x) = j , u <j x, and y <j+l v. In Figure 1, the total
orders are given by 1 <1 7, 2 <2 4 <2 6 <2 8, and 3 <3 5 <3 9.

The problem of recognizing whether a connected leveled dag G is a leveled-
planar dag is then equivalent to determining whether there are total orders on
all the levels that are witness to a leveled-planar embedding of G. Let Gj denote
the subgraph of G induced by V1 U V2 U ..- U Vj. (Note that, unlike G, Gj
is not necessarily connected.) Each total order on Vj can be thought of as a
permutation on Vj. Moreover, for each j , there is a set of permutations/-/j that
contains exactly the total orders on Vj that occur in witnesses to directed leveled-
planar embeddings of Gj. So to recognize whether G is a leveled-planar dag, we
need only compute Hm and check that it is nonempty. Our basic approach to
doing this efficiently is to perform a left-to-right sweep processing the levels in

302

the order V1, V2,... , Vm. For each level Vj, we say that a permutation 7r of the
nodes in V 3. is a witness to a directed leveled-planar embedding of Gj if the nodes
in Vj appear in a bottom to top order on line s according to ~r in some directed
leveled-planar embedding of Gj. For each level ~ , the algorithm constructs
a representation of all permutations on Vj that are witness to some directed
leveled-planar embedding of Gj. The data structure that we use for maintaining
sets of permutations is called a collection. So after processing 1/1, V2,..., Vj, we
have a collection Cj. The algorithm then processes Vj+I and uses Cj to construct
the next collection Cj+I.

3 P Q - t r e e s a n d C o l l e c t i o n s

In order to define the collection data structure precisely, we need the PQ-tree
data structure of Booth and Lueker [2] to represent sets of permutations. A PQ-
tree T for a set S is a rooted tree that contains three types of nodes: leaves,
P-nodes, and Q-nodes. The leaves in T are in one-one correspondence with the
elements of S. The set S is called the yield of T, denoted YIELD(T). The PQ-
tree T represents permutations of YIELD(T) according to the following rules:
(a) The children of a P-node may be permuted arbitrarily, (b) The children of
a Q-node must occur in the given order or in the reverse order. As a special
case, the empty PQ-tree e represents the empty set of permutations. The set of
permutations represented by T is denoted by PERM(T). The yield YIELD(r) of
a node r in T is the yield of the subtree rooted at r. Without loss of generality,
we may assume that every P-node has 3 or more children and that every Q-node
has 2 or more children. A collection is a finite set of PQ-trees with pairwise
disjoint yields.

For any PQ-tree T and connected leveled-planar dag F with k levels, for
some k > 0, we say that T represents F if and only if PERM(T) is the set
of all permutations of the level-k nodes in F that witness some leveled-planar
embedding of F. For each level Vj, our algorithm maintains a collection Cj
satisfying the property stated in the following theorem.

Theo rem 1. For each j, 1 < j < m, and for each connected component F in
Gj, there is a corresponding PQ-tree T[F] in Cj that represents F.

Since G = G m is connected, the above theorem implies that Crn contains a
single PQ-tree T[G], that represents G. So C,n contains a non-empty PQ-tree
if and only if G has a directed leveled-planar embedding. Thus the goal of our
algorithm is to compute Crn. The proof of Theorem 1 is inductively established
in the following description of the algorithm.

The algorithm initializes C1 = {leaf v [v e V1 }. Thus for j = 1 (the base
case), the correspondence claimed in Theorem 1 is trivially true. The algorithm
then proceeds to inductively construct 6'2, C3, . . . , C,n in that order. As an in-
ductive hypothesis, we assume that Theorem 1 holds for some j > 1.

In order to construct Cj+I from Cj, we assume that some information is
maintained in each non-leaf node of a PQ-tree in Cj and one additional piece of

303

information is maintained at the root of a PQ-tree in Cj. Let F be any connected
component of Gj. By the inductive hypothesis, T[F] is the PQ-tree in Cj that
represents F. For any subset S of the set of nodes in ~ that belong to F, define
MEETLEVEL(S) to be the greatest d < j such that V4,.. . , Vj. induces a dag in
which all nodes of S occur in the same connected component. For example, in
Figure 1, MEETLEVEL({3, 5}) = 1 and MEETLEVEL({5, 9}) = 2. Note that
if ISI > 1, then MEETLEVEL(S) < j. For a Q-node q in T[F] with ordered
children rl, r2,. . . , rt, maintain in node q integers denoted ML(r~,ri+l), where
1 _< i < t, that satisfy ML(ri, r~+l) = MEETLEVEL(YIELD(r~)UYIELD(ri+I)).
For a P-node p in T[F], maintain in node p a single integer denoted ML(p) that
satisfies

ML(p) = MEETLEVEL(yield(p)).

Let S be any subset of the set of nodes in Vj that belong to F. Now define
LEFTLEVEL(S) to be the smallest d such that F contains a node in Vd. We
always have LEFTLEVEL(S) _< MEETLEVEL(S) and inequality is possible.
At the root of T[F], maintain a single integer denoted LL(T[F]) satisfying

LL(T[F]) = LEFTLEVEL(YIELD(T[F])).

When our algorithm computes the collection Cj+I from Cj, it also maintains the
values of ML and LL in the PQ-trees in Cj+I. Note that since every PQ-tree in
C1 is a leaf, ML values are not defined, while LL(T) = 1 for each tree T E C1.

4 O p e r a t i o n s

We have described our data structure and now describe two simple operations
on PQ-trees that serve as building blocks of the algorithm that constructs Cj+I
from Cj.

1. ISOLATE(T,x), where T is a PQ-tree and x E YIELD(T). This operation
returns a PQ-tree T' such that (a) The root of T' is a Q-.node with x as its
first or last child. (b) PERM(T') is the subset of permutations in PERM(T)
in which x is either the first or the last element. If YIELD(T) = {x}, then
ISOLATE(T, x) returns a PQ-tree that is just the single leaf x. If there is
no permutation in PERM(T) that has x as its first or last element, then
ISOLATE(T,x) returns e.

2. IDENTIFY(T, x, y, z), where T is a PQ-tree, x,y e YIELD(T), x # y, and
z • YIELD(T). Let P be the subset of permutations in PERM(T) in which
x and y appear consecutively. Let P ' be obtained from P as follows: If
P contains the permutation a , . . . , b , x , y , c , . . . ,d, then put in P' the per-
mutation a , . . . , b, z, c , . . . , d, obtained by replacing x, y by z. The operation
IDENTIFY(T, x, y, z) returns a PQ-tree T ~ such that PERM(T') = P' . Note
that P' may be empty, in which case T' = e.

The operation ISOLATE(T, x) is a special case of Booth and Lueker's RE-
DUCE operation and can be implemented as follows. Let r be the root of T. If

304

x -- r, then ISOLATE(T, x) simply returns T. Otherwise, there are two cases
based on whether x is a child of r or not.
B a s e Case : x is a child of r. If r is a Q-node and x is not its first or last
child, then there are no permutat ions in P E R M (T) with x at the end or at the
beginning, so the operat ion returns e. If r is a Q-node and x is either the first
or the last child of r, then nothing needs to be done and the operation simply
returns T. If r is a P-node, then T is t ransformed as shown in Figure 2.

I

1 k
1

I

k

Fig. 2. The transformation of T in the base case of ISOLATE(T, x).

I n d u c t i v e Case : x is not a child of r. Let T ' be the subtree rooted at a
child of r whose yield contains x. Let T " = ISOLATE(T ' , x). If T " = e, then
ISOLATE(T, x) also returns e. Otherwise, replace T ' by T" . The root of T " is
a Q-node with x as either its first or its last child. If r is a P-node, perform
the t ransformation on T shown in Figure 3. If r is a Q-node and T " is not the

z
1 k k + l j

Fig. 3. The transformation of T in the inductive case of ISOLATE(T, x) when r is a
P-node.

first or the last child of r, then the algorithm returns e; otherwise, perform the
t ransformation on T shown in Figure 4. The running t ime of ISOLATE(T, x) is
proport ional to the depth of x in T.

The operat ion IDENTIFY(T , x, y, z) can be implemented in the following
four steps.
S t e p 1. Locate r, the node in T tha t is the least common ancestor of x and y.

305

TII

I I

. - , , , , • '

x 1 k

Fig. 4. The transformation of T in the inductive case of ISOLATE(T, x) when r is a
Q-node.

S t e p 2. Let T1 and T2 be subtrees of T rooted at a children of r such tha t
x ~ YIELD(T1) and y e YIELD(T2). Let T~ = ISOLATE(TI ,x) and T~ =
ISOLATE(T2,y). If either T~ = e or T~ = e, then IDENTIFY(T,x,y,z) returns
e. Otherwise, replace T1 by T~ and T2 by T~. The root of T~ (respectively, T~) is
a Q-node with x (respectively, y) being the first or the last child of the root.
S t e p 3. This step depends on whether r is a P-node or a Q-node.

(a) r is a P-node. T is t ransformed as shown in Figure 5.

~1 I~1 I \ ".

x 1 k y k + l j

1

k 1 = y k + l j

Fig. 5. The transformation of T in IDENTIFY(T, x, y, z) when r is a P-node.

3 0 6

(b) r is a Q-node. If the subtrees T1 and T~ are not adjacent children of r, then
the operation returns e. Otherwise, T is transformed as shown in Figure 6.

z b j y $ t

I I

1 w

Fig. 6. The transformation of T in IDENTIFY(T, x, y, z) when r is a Q-node.

Step 4. Leaf z replaces leaves x and y.
The running time of IDENTIFY(T, x, y, z) is proportional to the sum of the
depths of x and y in T. In the transformations described above we have ignored
several special cases caused by the fact that a transformation might lead to
the birth of a P-node with two children. Instead of dealing with these cases
separately, we simply note that whenever this happens, the P-node is replaced
by a Q-node. The operations ISOLATE and IDENTIFY also update ML and
LL values. Details are omitted due to lack of space.

5 Recognizing Leveled-Planar Dags

We are now ready to describe how our algorithm constructs Cj+I from Cj.
To understand the intuition behind the construction, imagine that through a
sequence of simple operations (to be described later) dag Gj is transformed into
dag Gj+I. This yields a sequence of dags H 1 , H 2 , . . . , H k with Gj = /-/1 and
Gj+I = Hk. Correspondingly, collection Cj is transformed into collection Cj+I
via a sequence of operations that mimic those applied to Hs, 1 _< s < k. This
yields a sequence of collections DI, D2, . . . , D~, where Cj = D1 and Cj+ I = Dk.
In what follows, we show that the operation applied to Ds, for each s, 1 _< s < k,
mimics the operation applied to /-/8 in such a way that the correspondence
between Gj and Cj, claimed in the induction hypothesis, also exists between
Gj+I and Cj+I.

We use the following three operations to transform Gj into Gj+I:

307

/* Algorithm for transforming dag Gj into dag Gj+I */

H:=Gj;

/* GROWTH PHASE */
for all connected components F in H do

for all level-j nodes u in F do
Yu := (v[u] [(u,v) �9 Ej};
Replace F in H by GROW(F, u, N~);

/* MERGE PHASE */
for all pairs of level-(j + 1) nodes (v[X], v[Y]) in H do

if v[X] and v[Y] belong to the same connected component F then
Replace F in H by MERGEI(F, v[X], v[Y], v[X, Y])

else if v[X] and v[Y] belong to components F1 and F2 then
Replace F1 and F2 in H by MERGE2(F1, F2, v[X], v[Y], v[X, Y]);

/* CLEANUP PHASE */
Relabel each node v[X] in H as v;
Add all the level-(j + 1) sources in G to H;

Gj+I:=H;

Fig. 7. Transforming Gj into Gj+I

1. GROW(F,u , S), where F is a connected, leveled-planar dag with k or k + 1
levels, for some k _> 0, u is a level-j node in F, and S is a set of nodes not
in F. The operation returns the dag obtained by adding arcs (u, v) for all
v E S , toF.

2. MERGEI(F, u, v, w), where F is a connected, leveled-planar dag with k lev-
els, for some k _ 0, u and v are distinct level-(j + 1) nodes in F , and w is a
node not in F. The operation returns the dag obtained by identifying nodes
u and v in F and replacing the resulting node by w.

3. MERGE2(F1,F2,u,v,w), where F1 and F2 are connected, leveled-planar
dags, each with k levels, for some k >_ 0, u is a level-(j + 1) node in F1
and v is a level-(j + 1) node in F2, and w is a node not in F1 or F2. The
operation returns the dag obtained by identifying nodes u and v in F and
replacing the resulting node by w.

Figure 7 shows the algorithm that uses the above operations to transform Gj into
Gj+I. In this algorithm, H is initialized to Gj and then transformed into Gj+I
by repeatedly applying the three operations described above in three phases. In
the GROWTH PHASE, to each level-j node in H with outdegree equal to d, d
out-neighbors are attached. Thus after the GROWTH PHASE, each level-(j + 1)
node v in G with p in-neighbors is represented by p copies in H, each copy having
in-degree equal to 1. Note that these p copies have labels V[Ul], v[u2],.. , v[up],

308

I
i

GROWTH PHA:E

Iz ~2

. 9[s]

918)

5141

Fig. 8. Illustration of the GROWTH PHASE.

~ 9[8] ~ 9[8,6] ~ 9[s,6]

11 12 /8 Q 12 Is 11 12 Is

Fig. 9. Illustration of the MERGE PHASE.

where Ul,U2,... ,up are the p in-neighbors of v in G. Figure 8 illustrates the
GROWTH PHASE applied to G2, the subgraph of the dag in Figure 1, induced
by the first two levels.

We extend the v[u] notation to include v[X], where X is a sequence of distinct
level-j nodes that are all adjacent to v; we think of X as a set of nodes, while
v[X] is a single level-(j + 1) node that is adjacent to each u e X. In the MERGE
PHASE, each pair of level-(j + 1) nodes (v[X], v[Y]), where X D Y = 0, is merged
into a single node with label v[X, Y]. Note that v[X] and v[Y] may belong
to the same connected component or to different connected components and
accordingly the operations MERGE1 or MERGE2 are used. Figure 9 illustrates
the MERGE PHASE applied to the dag resulting from the GROWTH PHASE
shown in Figure 8. In the CLEANUP PHASE, each level-(j + 1) node in H with
label v[X] is relabeled v so as to match its name in Gj+I. For example, the dag
obtained after the MERGE PHASE in Figure 9 contains nodes 9[8, 6], 5[4, 6],
and 3[2] which are relabeled 9, 5, and 3 in the CLEANUP PHASE. Finally level-
(j + 1) sources in G are added to H. This completes the transformation of H
into Gj+I.

309

Having described the sequence of operations that transforms Gj into Gj.+-I,
we now describe the parallel sequence of operations that transforms Cj into Cj+I.
As mentioned earlier, the operations on collections closely mimic the operations
on dags and so corresponding to each of the operations GROW, MERGE1, and
MERGE2 that operate on connected leveled-planar dags, we define the following
three operations that operate on PQ-trees:

1. GROW(T, u, S), where T is a P.Q-tree, u E YIELD(T), and SNYIELD(T) =
0.

2. MERGEI(T, u, v, w), where T is a PQ-tree, u,v E YIELD(T), and w ~g
YIELD(T).

3. MERGE2(T1,T2, u,v,w), where T1 and T~ are PQ-trees, u e YIELD(T1),
v e YIELD(T2), and w f~ YIELD(T1) U YIELD(T2).

Each of these operation returns a PQ-tree. To see how these operations
are applied to collections, let us suppose that a collection D is initial-
ized to Cj. Imagine that when F is replaced by GROW(F,u, Nu) in H
in the GROWTH PHASE, the corresponding PQ-tree T[F] is replaced by
GROW(T[F], u, N~) in D. Similarly, in the MERGE PHASE, when F is replaced
by MERGEI(F, v[X], v[Y], v[X, Y]), then the corresponding PQ-tree T[F] is re-
placed by the PQ-tree MERGEI(T[F], v[X], v[Y], v[X, Y]). Finally, when F1 and
F2 are replaced by the dag

MERGE2(F~, F2, v[X], v[Y], v[X, Y]),

then the corresponding PQ-trees T[F1] and T[F2] are replaced by

MERGE2(T[F1], T[F2], v[X], v[Y], v[X, Y]).

Corresponding to the relabeling of the level-(j + 1) nodes in H in the CLEANUP
PHASE, all the leaves of trees in D are similarly relabeled and corresponding to
the addition of the level-(j + 1) sources to H, PQ-trees that just contain a leaf
are added to D. This completes the construction of Cj+I. Thus the transforma-
tion of Cj into Cj+I can also be viewed as proceeding in three distinct phases:
GROWTH PHASE, MERGE PHASE, and CLEANUP PHASE. Our task now
is to describe the three operations on PQ-trees mentioned above and to prove
their correctness.
1. GROW(T, u, S). This operation returns a PQ-tree T' obtained from T as
follows. If S = 0, then T' is obtained by deleting u from T. Otherwise, let
S = {vl,v2,. . . ,vk}, for some k _> 1. If k = 1, then T' is obtained by replacing
u by the leaf vl. If k = 2, then T' is obtained by replacing u by a Q-node q
whose children are the leaves vl and v2. Then the information ML(vl, v2) = j
is inserted at q. If k > 2, then T' is obtained by replacing u by a P-node p
whose children are the leaves vl, v2, . . . , vk. Then the information ML(p) = j is
inserted at the new P-node. The operation leaves the LL value of T unchanged,
that is, LL(T') = LL(T). The correctness of GROW(T, u, S) is embodied in the
following lemma, which follows from the discussion.

310

L e m m a 2. After the GROWTH PHASE, for each connected component F in
H, there is a PQ-tree T[F] in D that represents F .

2. M E R G E I (T , u, v, w). This operation simply calls IDENTIFY(T, u, v, w) and
returns the PQ-tree obtained. The correctness of MERGEI(T, u, v, w) is embod-
ied in the following lemma.

Lemraa 3. Suppose that F is a leveled-planar dag with j levels. Further suppose
that T is a PQ-tree that represents F. I / F ~ = MERGEI(F, u, v, w) and T ~ =
MERGEI(T, u, v, w), then T' represents F.

3. MERGE2(T1, T2, u, v, w). Without loss of generality, suppose that LL(T1) <
LL(Tz). The trees T1 and Tz are merged in two steps. In the first step, the PQ-tree
Tz is attached to T1 at an appropriate location. The resulting tree, Ts, contains
the leaves u and v. In the second step, these two leaves in 2"3 axe identified into
one leaf w using the operation IDENTIFY. The two steps axe discussed in detail
below.

Step 1. Attaching T2 to T1. Start with the leaf u in T1 and proceed upward in
T1 until a node r ~ and its parent r are encountered such that:

1. r is a P-node with ML(r) < LL(T2). T3 is obtained by attaching T2 as a
child of r in T1.

2. r is a Q-node with ordered children rl,r2, rt, r ~ = rl, and ML(rx,r2) <
LL(T2). T3 is obtained by replacing rl in TI with a Q-node q having two
children, rl and the root of T2. The case where r ~ = rt and M L (r t - l , r t) <
LL(T2) is symmetric.

3. r is a Q-node with ordered children r l , r ~ , . . . ,rt , r ~ = ri, for some i satisfying
1 < i < t, and both ML(r~_l,ri) < LL(T2) and ML(ri,rt+l) < LL(Tz). T3 is
obtained by replacing ri in TI with a Q-node q having two children, ri and
and root of T2.

4. r is a Q-node with children r l , r2 , . . . ,rt, r I = ri, 1 < i < t, and

M L (r i - l , r i) < LL(T2) < ML(ri, r~+i).

T8 is obtained by attaching T2 as a child of r between ri-1 and ri. The case
where

ML(ri,ri+l) < LL(T2) < ML(ri-1, ri)

is symmetric.
5. r ~ is the root of T1. In this case, construct Ts by making its root a Q-node

q with two children, r ~ and the root of Tz.

Step 2. Identifying u and v in Tz. Return IDENTIFY(T3, u, v, w).
Steps 1 mad 2 described above also update ML and LL values. Details are not
presented due to lack of space. The following lemma establishes the correctness
of MERGE2(T1, Tz, u, v, w).

311

L e m m a 4 . Suppose that F1 and F2 are connected leveled-planar dags and
T1 and T2 are PQ-trees that represent F1 and F2 respectively. If F =
MERGE2(F1, F2, u, v, w) and T = MERGE2(T1, T2, u, v, w), then T represents
F.

This completes the discussion of our algorithm and establishes this theorem.

T h e o r e m 5. A leveled-planar dag can be recognized in linear time.

The time complexity follows from an amortized analysis tha t we sketch here.
It suffices to show that the time complexity of all the MEI~GE1 and MERGE2
operations together is linear. Each arc in the dag G is allocated three credits;
since G is planar, the total number of credits is linear. In MERGE1, there are
two paths in the dag involved in forming a new face; since each arc is in two
faces, two credits from each arc in the face pays for the MERGE1. In MERGE2,
the work is proportional to the height of the shorter dag; there is always a path
in the dag that has a credit on each arc. We conclude that the allocated credits
are sufficient and that the time complexity is linear.

References

1. Giuseppe Di Battista and Enrico Nardelli. Hierarchies and planarity theory. IEEE
Transactions on Systems, Man, and Cybernetics, 18:1035-1046, 1988.

2. Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer
and System Sciences, 13:335-379, 1976.

3. Mahadevan Chandramouli and A. A. Diwan. Upward numbering testing for tricon-
nected graphs (an extended abstract). Accepted at Graph Drawing 95.

4. Lenwood S. Heath and Sriram V. Pemmaraju. Stack and queue layouts of posets.
Technical Report 93-06, University of Iowa, 1993. Submitted.

5. Lenwood S. Heath and Sriram V. Pemmaraju. Stack and queue layouts of directed
acyclic graphs: Part II. Technical Report 95-06, University of Iowa, 1995. Submit-
ted.

6. Lenwood S. Heath, Sriram V. Pemmaraju, and Ann Trenk. Stack and queue layouts
of directed acyclic graphs. In William T. Trotter, editor, Planar Graphs, pages 5-11,
Providence, RI, 1993. American Mathematical Society.

7. Lenwood S. Heath, Sriram V. Pemmaraju, and Ann Trenk. Stack and queue layouts
of directed acyclic graphs: Part I. Technical Report 95-03, University of Iowa, 1995.
Submitted.

8. Lenwood S. Heath and Arnold L. Rosenberg. Laying out graphs using queues.
SIAM Journal on Computing, 21(5):927-958, 1992.

9. Michael D. Hutton and Anna Lubiw. Upward planar drawing of single source acyclic
digraphs. In Proceedings of the 2nd Symposium on Discrete Algorithms, pages 203-
211, 1991.

