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Abs t r ac t .  We prove that the crossing number of the cartesian product 
of 2 cycles, Cm • Cn, m < n, is of order ~(mn), improving the best 
known lower bound. In particular we show that the crossing number of 
Cm • Cn is at least ran~90, and for n = m, m § 1 we reduce the constant 
90 to 6. This partially answers a 20-years old question of Harary, Kainen 
and Schwenk [3] who gave the lower bound m and the upper bound 
(m - 2)n and conjectured that the upper bound is the actual value of 
the crossing number for C,~ • Cn. Moreover, we extend this result to 
k > 3 cycles and paths, and obtain such lower and upper bounds on the 
crossing numbers of the corresponding meshes, which differ by a small 
constant only. 

1 I n t r o d u c t i o n  

The crossing number  of a graph G, denoted by cr(G),  is the min imum number  
of crossings of its edges over all drawings of G in the plane, such that  no more 
than two edges intersect in any point and no edge passes through a vertex. 
Comput ing  cr(G) is NP-hard and there have been only few results concerning 
the exact value of crossing number for very special and restricted classes of 
graphs. Besides Kle i tman 's  exact result [6] on the crossing number  of Kin,n, for 
m < 6, most  effort has been devoted to crossing numbers of some cartesian 
product  graphs [4, 7, 8, 22]. For a detailed exposition of the crossing number  
problem see our survey [19]. 

For G1 = (V1, V2) and G2 = (V2, E2), let G1 • G2 denote the cartesian 
product of G1 and G2. Thus G1 • G2 is a graph with the vertex set V1 • V~ in 
which (i , j)(r,s) are adjacent iff either i -- r and j s  E E2 or j = s and ir  �9 El .  
Let Pn and C~ denote the n-vertex pa th  and the n-vertex cycle , respectively. 

k k �9 
For 2 < nl < n~ < ... < nk, let Mk = l-L=1 P,~, and TM~ -= YL=I c,~,. We will 
call Mk and TMk the k-dimensional mesh and the k-dimensional toroidal mesh, 
respectively. 

* Research of the 2nd and the 4th author was partially supported by grant No. 
2/1138/94 of Slovak Grant Agency and Alexander yon Humboldt Foundation. 
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Clearly, M2 is planar and has crossing number 0, but estimating the crossing 
number of TM2 has been an open problem. Harary et al. [3] provided a simple 
drawing of Cm x Cn, m < n with (rn - 2)n crossings. They also derived a weak 
lower bound m on cr(Cm x Cn) and conjectured that  cr(Cm x Cn) = (m - 2)n, 
for 3 < m < n. Beineke and Ringeisen [1, 16] proved the conjecture for rn < 4. 
Richter and Thomassen [15] proved the conjecture for m = n = 5. Finally, 
very recently Kled~ [9] and Richter and Stobert [14] announced their proof for 
m = 5 and arbitrary n > 5. It is instructive to mention that  all existing standard 
methods for estimating lower bounds on the crossing number fail to give good 
lower bounds for cr(Cm x Cn). In particular two very powerful methods developed 
by VLSI community [11] - the bisection method and the embedding method - 
give a weak lower bound for cr(Cm x C~). We suspect that  the reason is that  
C m x  Cn has genus 1 and very much resembles the planar 2-dimensional mesh. 

In this paper we take a major  step to prove the conjecture and show that  for 
6 <_ m < n, cr(Cm x C,~) > mn/90. For n --- m, m + 1 we improve the constant 
90 to 6. It is worth mentioning that  the method used here to prove our main 
result employs Dilworth' chain decomposition theorem which was shown to be 
very effective when dealing with problems in combinatorial geometry [10, 13]. 

Moreover for k > 3, we derive upper and lower bounds within a constant 
multiplicative factor for the crossing number of M~ and TMk. We indicate that,  
since bisection width of Mk and TM~ are known, see for instance [12], one can use 
the relationship between the crossing number and the bisection and derive lower 
bounds for cr(M~) and cr(TM~), k _> 3 which are of the same order magnitude 
as the lower bounds we have derived here. Nevertheless, such an approach does 
not provide constants, whereas, our method identifies relatively large constants 
associated with our lower bounds. Moreover, for k > 3 we have been able to 
provide (new) drawings of Mk and TM~, with number of crossings which are 
within relatively small constant factors from the lower bounds, under reasonable 
conditions. 

2 Crossing Number  of Cm X C~ 

One finds in C m x  C~ in a natural way n vertex disjoint row cycles and m vertex 
disjoint column cycles. We will call them r-cycles and c-cycles. Deleting all edges 
of any r-cycle (c-cycle) yields a graph which is a subdivision of C m x  C,~_ 1 (of 
Cm-1 x Cn) and therefore has a crossing number less than or equal to that  of 
Cm x C~. It immediately follows, that  cr(Cm x Cn) is monotone nondecreasing 
in both parameters. We will use this fact implicitly throughout our proof many 
times. 

T h e o r e m  2.1 For 6 <_ m <_ n, 

m n  

cr(C. ,  x c~) > 9-5- 
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P r o o f .  If  6 < m < n < 180 then by monotonici ty and a result of Beineke and 
Ringeisen [1]: cr(C4 x C~) = 2n we have 

mn 
cr(em x Cn) >_ cr(C4 • Cn) : 2n > 9--0 

Assume n > 181. For a closed curve C in the plane R 2, define its body B(C)  as 
the closure of the union of the bounded components of R 2 \ C. See Fig. 1. Define 
the exterior of C as the complement  of B(C) (the white part  of Fig. 1). 

Fig .  1 : The body of a closed curve 

Let us be given a drawing D of Cm • C~ in the plane. We may  assume 
without loss of generality that  (1) crossing edges really cross, i.e. no touching 
situation occurs, (2) the number  of crossings in D is finite. Define a partial  order 
on the set of its r-cycles by C < Z if C lies in one of the bounded connected 
components of R 2 \ Z. Dilworth'  Theorem [2] p. 62 applies to this poset. If  k is 
the size of the largest antichain, then the poset may be decomposed into chains 
of length al,a2, . . . ,ak such that  al + a2 + ... + ak = n. In such a chain each 
member  contains the next member  of the chain in one of the bounded connected 
components of the plane that  it defines. Each c-cycle has exactly one vertex on 
every member  cycle in the i-th chain. Hence, by Jordan 's  Curve Theorem, every 
c-cycle has at least a~ - 2  crossings with the r-cycles of the i-th chain. Therefore, 
cr(D) > m(al + a2 + ... + ak - 2k) = m(n - 2k) > mn/50, if k < 49n/100. 

Assume that  k > 49n/100. We have an antichain of size at least 49n/100, i.e. 
at least 49n/100 r-cycles such that  any two cross or they lie in the exterior of 
each other. Ignoring the edges of the other r-cycles, we consider our drawing as 
a drawing of a C m x  C[49n/loo]. For any r-cycle C let a(C) denote the number  
of c-cycles whose bodies lie in the body of C. Observe that  for two r-cycles 
C, Z taken from an antichain, a(C) > 0 implies 2 crossing of C and Z, since 
every c-cycle was supposed to have a common vertex with every r-cycle and if 
two r-cycles cross then they must  cross at least twice. Either we have at least 
(1/24)(49n/100) r-cycles C with a(C) > 0, and the total  number  of crossings is 
2(49n/2400).  (49n/100 - 1) > mn/90 and we are at home, or we have at least 
(23/24)(49n/100) r-cycles C with a(C) = O. Reduce our drawing further to the 
drawing of the corresponding Cm • C[1127~/2400]. 
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Now every c-cycle either crosses an r-cycle or is in the exterior of it. Either 
we have at least (1/3)(1127n/2400) r-cycles, such that  each of them is crossed 
by the c-cycles at least m/14 times, or we have at least (2/3)(1127n/2400) r- 
cycles, such that  the c-cycles cross them at most m/14 times. In the first case 
cr(D) > mn/90, and the Theorem holds. In the second case reduce our interest 
to a drawing D of G = C m x  Cfl127n/36oo] so that  for every r-cycle C, a(C) = 0 
and at most m/14 c-cycles cross C. Let cr(D) denote the number of crossings 
in D. The proof is completed employing the following claim. 
C la im:  D can be extended to a drawing D' of a graph G' with cr(G') > ran~15 
and cr(D') <_ 6cr(D). 
P r o o f  o f  t h e  C la im.  We construct D t by adding edges to each r-cycle C. In 
particular we add at least 3m/14 new edges to each r-cycle C. 

Let S be the set of all c-cycles that  cross C. By deleting all edges of C that  
are crossed by c-cycles from S, we divide C to at most [m/14J vertex-disjoint 
paths. On these paths, there are at most [m/14J vertices, in which c-cycles from 
S have a vertex in common with C, since each r-cycle and each c-cycle have 
exactly one vertex in common. These vertices divide the [rn/14J vertex disjoint 
paths into at most 2[m/14J edge disjoint paths of lengths dl, d2, d3, ..., d2Lrn/14J, 

~--,2Lm114 j where z-~i= 1 di > m -  Lm/14J. To each path of length di, we can add at least 
[dd3  j new edges so that  

(i) in each path above we join vertices of distance 3 in a greedy way, such that  
the new "long edges" do not overlap 

(ii) the new edges are drawn very close to C and inside B(C),  as far as it is 
possible 

(iii) the new edges do not cross each other unless the corresponding part of the 
drawing of C is self-intersecting 

(iv) the new edges do not cross c-cycles. 

Fig. 2 
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Fig. 2 shows details of a drawing of C23 x C l l  with one r-cycle (solid line) 
and one c-cycle (dashed line). The new edges are drawn by dotted lines. Hence 
the total number of added edges is 

Z _> --5-_>g m- ]7 -4 ]7 -> 14 
i----I i=I 

The drawing D' obtained in this way corresponds to a graph G' which has 
m[1127n/3600] vertices, at least 2m[1127n/3600] + 161mn/2400 edges, and of 
girth 4. Due to the construction cr(D') <_ 6cr(D), since a crossing of two distinct 
r-cycles in D may result in at most 4 crossings in D', a self-crossing of an r-cycle 
in D may result in 6 crossings in D'  (see Fig. 2). Crossings of r-cycles and c-cycles 
do not multiply. Finally, Kainen's lower bound [5] applies to G': 

girth( G') 
cr(G') >__ IE(G')I-  girth(G') - 2 (IV(G')I - 2). 

This formula immediately finishes the proof. [] 
In special cases, we can improve the lower bound to the following: 

T h e o r e m  2.2 For 3 <<_ m < n, where n = m or m + 1 

(m - 2)n 
cr(Cm x C.) >_ 6 

P r o o f .  We inductively show that  if the claim holds for cr(C,~ x Cr,), then it 
also holds for cr(Cm x Cm+l), and use this to show that  the claim holds for 
cr(Cm+l x Cm+l). We call the crossing of two different r-cycles as rr-erossing. 
Similarly define the cc-erossing and the re-crossing. The claim is true for C,~ x 
Cm when m <_ 10, as cr(Cm x Cm) = (m - 2)m, for m _< 5, [1, 16, 15] and 
cr(Cm x Cm) >_ cr(C5 x C5) = 15 _> (m - 2)m/6,  for m = 6, 7,..., 10. Let the 
claim hold for C,~ x C,~, m >_ 10. We first show it holds for C,~ x C,~+1. Consider 
any drawing of Cm x Cr,+l .  Suppose that there exists an r-cycle in C,~ x Cm+l 
containing at least m/6 crossings. Deleting the edges of this r-cycle we get a 
subdivision of C m x  Cm. Hence 

m > ( m - 2 ) m  m ( m - 2 ) ( m + l )  
c~(Cm • cm+l) k c~(cm x cm) + -~ _ ~ + T > 6 

Suppose that  each r-cycle in C m x  Cm+l contains at most Lm/6J crossings. 
We may assume that  there exist 3 distinct r-cycles, so that  no two of them 
have a crossing. Otherwise each triplet of r-cycles would determine at least 2 
rr-crossings and a simple counting argument shows that  

cr(Cm • Cm+l) > 2(m+~) > ( m -  2 ) ( m +  1) 
- m - 1  6 

Consider the 3 distinct r-cycles. Since for each of them, there exist at least 
m - [m/6J c-cycles, which do not cross it, there are at least m - 3[m/6J c- 
cycles, none of them crosses any of the 3 distinct r-cycles. Now every triplet 
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of these m - 3 [m/6J c-cycles together with the 3 distinct r-cycles determine a 
subdivision of Cs x C3. If the subdivision contains a selfcrossing of a cycle we 
can redraw it without the selfcrossing and without producing a new crossing. 
Hence we may assume that  the subdivision is without selfcrossings. It has 3 
cc-crossings, since cr(C3 x C3) = 3, but it must contain an even number of cc- 
crossings, since c-cycles are vertex disjoint and if they cross, they must cross 
an even number of times. Thus, this subdivision contains at least 4 cc-crossing. 
Further, a counting argument shows that,  

cr(Cm x Cm+t) > 4(m-3[am/N) > ( m -  2)(m + 1) 
- m - 3 [ m / 6 1 - 2 -  6 

We may conclude that  if the claim holds for Cmx Cm it also holds for C,~ x Cm+i. 
Now we use this fact to prove a lower bound for Cm+i x Cm+i. Suppose that  
there exists an r-cycle in Cm+i x Crn+i containing at least (m + 1)/6 crossings. 
Deleting the edges of the r-cycle we get a subdivision of Cm+i x Cm. Hence 

cr(C,~+l x Cm+i) > cr(Cm+l x Cm) + m + 1 > ( m -  2) ( rn+  1) m + 1 
- - - - C - -  6 + - - - K -  
> (m - i)(m + I) 

- 6 

Suppose that each r-cycle in Cm+i x Crn+l contains at most ( m +  1)/6 cross- 
ings. The rest of the proof is the same as the proof of the lower bound for 
Cmx Cm+l. [] 

3 Crossing Number of Mk and TMk 

It is straightforward to show, using Theorem 2.1 that,  for k > 3, cr(TMk) = 
[2(Yi~=ini ) which is a weak lower bound in some cases. In this section we prove 
near-optimal lower and upper bounds on the crossing number of TMk and Mk, 
for k > 3. In particular, when ni -- n, i -- 1, 2, .., k, the upper and lower bounds 
differ by a multiplicative factor only. Let Gi = (Vi, El)  and G2 -- (V2, E2) be 
graphs such that  I Vi I -< IV2 I. 

An embedding w of Gi in G2 is a pair of injections (r r 

r : Vi ~ V2, r : E i  --~ {all paths in G2}, 

such that  if uv G E1 then r is a path between r and r Define the 
congestion of w 

#w -- en~x{]{f E E i  : e E r  

Leighton [11] invented a lower bound technique for crossing numbers, based 
on an embedding of the complete graph in the given graph. Several authors 
[18, 20, 22] realized that the method can be generalized for arbitrary graphs in 
the following form: 
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L e m m a  3.1 Let w be an embedding of G1 = (V1,E1) into G2 = (V2,E2), 
IV1[ < IV2[. Let 02 be a drawing of G2 with cr(D2) crossings, then there is a 
drawing D1 of G1 with cr(D1) crossings so that 

cr(D1) [V2[A~ 
cr(D2) > #----~ ~ ,  

where A2 is the maximum degree of G2. [] 

For 2 _< nl _< n~ ..... <_ nk, let Ni = nln2...ni, for i = 1, 2, . . . ,k.  

T h e o r e m  3.1 For k >_ 3 

2 

N~_I (5k 2 + 8)Nk < cr(Mk) < 4Nk-2Nk 
5 2 - - ' 

2 

4gk-1  2(k 2 + 2)Nk < cr(TMk) < 16Nk-2Nk + 8k2Nk. 
5 - -  - -  

P r o o f .  We first prove the lower bound for cr(TMk) and construct an upper 
bound for cr(Mk). Set G2 = TMk and G1 = 2Kgk, where 2Kgk denote the 
complete multigraph on Nk vertices, obtained from Kyk by replacing every edge 
by two new edges. Shahrokhi and Sz6kely [17] constructed an embedding w of 
G1 into G2 with 

Nknk 
#~ <- 4 

Substituting this into Lemma 3.1, recalling from [21] the following formula: 

cr(gN~) > N:  - 7N 2 
- 8 0  ' 

and noting that cr(2Kyk) = 4cr(Kgk) we get the claimed lower bound for TMk. 
Now we prove an upper bound for cr(M~). We construct a recursive drawing 

Lk for Mk in which all vertices are placed along a straight line in the plane. For 
M1 = P~I we place successively the vertices of P,~I on a line and obtain a drawing 
with no crossings. Assume that we have constructed a drawing Lk-1 of Mk-1 
with cr(Lk-1)  crossings. The drawing Lk of Mk = Mk-1 x P~k is constructed 
in the following way. Place nk copies of the drawings Lk-1 successively on a 
line such that  2 neighboring copies are symmetric according to a perpendicular 
line between the 2 copies. Join the corresponding vertices of the first and the 
second copy by edges drawn as half-circles above the line. Similarly, join the 
corresponding vertices of the second and the third copy by edges drawn as half- 
circles below the line and continue in this fashion until a drawing Lk of Mk is 
obtained. Let us call the inserted edges the edges of the dimension k and denote 
the number of crossings in L~ by cr(Lk). Clearly 

cr(n~) < nkcr(nk-1) + lk, 

where lk denotes the number of crossings of the edges of the k-th dimension with 
edges of nk copies of the drawing Lk-  1, i.e. the number of crossings of edges of 
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the k-th dimension with edges of smaller dimensions. A counting analysis shows 
that  there are at most Nk Ni -  1 crossings of the edges of the k-th dimension with 
edges of the i-th dimension, where No = 1. Hence 

and 

The solution is 

k-1 

i=i 

k-2 
cr(Lk) < nkcr(Lk-1) + Nk ~ Ni. 

i=o 

k-2 
c (Lk) < g k  - i - 1 ) g ,  

i=0 

< NkNk-2 (1 + - - 2 +  3 + ... + k - 1 ) < 4 N k N k _ 2 . _  
-- nk-2 nk-2nk-3 nk-2. . .nl  

Finally, we use Lemma 3.1 with G1 -- TMk and G2 = Mk and note that  
there is an embedding w of G1 into G2 with po~ -- 2. To get the upper bound 
for cr(TMk),  we take D2 to be Lk, then D1 is a desirable drawing of TMk.  To 
get the lower bound for cr(Mk), we substitute the term cr(D1) in the Lemma, 
by our lower bound for cr(TMk).  [] 

C o r o l l a r y  3.1 I f  nk = O(nk-1) then the bounds in Theorem 3.1 are optimal 
within a constant multiplicative factor and in addition, i f  hi = n2 = ... = nk = n 
then 

n2k-2 (5k2 + 8)nk < cr(Mk) < 4n 2k-2, 
5 2 - - 

4n2k-2 
5 2(k2 + 2)nk < cr(TMk) < 16n 2k-2 + 8k2n k. 

[] 

C o r o l l a r y  3.2 Consider a general k-dimensionM mesh GMk = I]~=1 An~, where 
An~ equals either P, i  or Ca,. Then 

cr(Mk) < cr(GMk) <_ cr(TMk).  

[] 
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