
S W A N : A D a t a S t ruc tu r e Visua l iza t ion Sys t em 1

Jun Yang
Hughes Network Systems
11717 Exploration Lane
Germantown, MD 20876

jyang@hns.com

Clifford A. Shaffer and Lenwood S. Heath
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061

shaffer@cs.vt.edu, hea th~cs .v t .edu

1 I n t r o d u c t i o n

Swan is a data structure visualization system. It allows users to visualize the
data structures and execution process of a C / C + + program. Swan views a
data structure as a graph or collection of graphs. By "graph" we mean general
directed and undirected graphs and special cases such as trees, lists and arrays.

As a part of Virginia Tech's NSF Educational Infrastructure Grant, Swan
will be used in two ways: by instructors as a teaching tool for data structures
and algorithms, and by students visualizing their own programs to understand
how and why they do or do not work. To use Swan, a program must first be
annotated, i.e., Swan calls are added to an existing program. The program is
then compiled and linked with the Swan Annotation Interface Library (SAIL).
The viewer then runs the annotated program.

Many program visualization systems exist. See [5, 4] for examples. These
have been used for teaching, presentation, and debugging purposes. The main
design goal for Swan was to create an easy-to-use annotation library combined
with a simple, yet powerful, user interface for the resulting visualization. Several
features distinguish Swan from most other program visualization systems:

1. Swan provides a compact annotation library. Fewer than 20 library functions
are frequently used.

2. The viewer's user interface is simple and straightforward.
3. The annotator decides the view semantics, i.e., the association between pro-

gram variables and graphical elements in the views. The annotator also con-
trols the progress of the annotated program.

4. Swan provides automatic layout of a graph so the annotator need only
concentrate on the logical structure of the graph.

5. Swan allows the viewer to modify the data structure.
6. Swan was built on the GeoSim Interface Library developed at Virginia

Tech, which allows Swan to be easily ported to X Windows, MS-DOS and
Macintosh computers. It is crucial for educational software to run on a variety
of operating systems that are widely used in computer science classes.

Currently, two versions of Swan are available: one for the X Window system
and one for MS-DOS. Information about Swan can be obtained through the
World Wide Web at URL h t t p : / / g e o s i m , cs. v t . edu/Swan/Swan, html.

1 The authors gratefully acknowledge the support of the National Science Foundation
under Grant CDA-9312611.

521

Visualization can be applied either to the physical implementation for a data
structure in a program or to the abstraction represented by that da ta structure.
For example, two views of a graph can be provided as part of an annotated mini-
mum spanning tree algorithm. In Figure 1, the view on the right is an adjacency
list representation of the graph, i.e., the program's physical implementation. The
view on the left shows the logical topology of the graph, an abstraction repre-
sented by the adjacency list. Separate views of the same data structure coexist
in Swan, each as a separate graph.

Fig. 1. Two views of a graph created in an annotated minimum spanning tree algorithm

In Swan, information can be passed from the annotator to the viewer in
the form of graphical representation of data structures. Information can also be
passed from the viewer to the annotator in the form of modification requests,
providing a powerful mechanism to encourage the viewer to be more active in
exploring the program and gaining new insights. This capability makes S w a n
different from most program visualization systems in which the viewer can only
watch the animation passively. We believe the ability to modify the program's
data structures not only makes Swan more suitable as an instructional tool, but
also shows the potential for Swan to be used as a graphical debugging tool at
the abstract level.

2 S y s t e m C o m p o n e n t s

Swan has three main components: the S w a n Annotation Interface Library
(SAIL) , the S w a n Kernel, and the S w a n Viewer Interface (SVI). S A I L is
a small set of easy to use library functions that allow the annotator to design
different views of a program. SVI allows a viewer to explore a S w a n annotated

522

program. The Swan Kernel is the main module in Swan. It is responsible for
constructing, maintaining, and rendering all views generated through SAIL li-
brary functions. It accepts viewer's requests through SVI. It is also the medium
through which the annotator communicates with the viewer.

All views in Swan are composed of Swan graphs. A Swan graph has a set
of nodes and edges. A Swan graph is defined by the annotator via its nodes
and edges. A Swan graph has default display attributes for its nodes and edges,
which are used by Swan to render the corresponding graphical objects. Nodes
and edges can have their own individual display attributes that can override the
graph's default values. The annotator uses SAIL to annotate the program; the
viewer investigates the annotated program through SVI.

The topology of a graph is stored in the Swan Logical Layer. The Swan
Logical Layer contains all the internal representations of graphs created by the
annotated program. For each graph, a standard adjacency list representation is
used to store all the graph's nodes and edges. After appropriate layout algo-
rithms are applied, a physical representation of the layout is kept in the Swan
Physical Layer. Every Swan graph has physical attributes, that affect its graph-
ical display. The most important attribute is the position of the graph and the
positions of all of the nodes and edges in this graph, that is, the layout of the
graph. Several graph layout algorithms have been implemented in Swan to deal
with different types of graphs so that the annotator does not need to spend time
on layout himself.

Events generated by interactions between the viewer and Swan are sent to
the Swan Event Handler. A Swan annotated program runs as a single thread
process. The events generated from the Swan Viewer Interface are stored in an
event queue. Initially the annotated program has control of the process. When-
ever a SAIL function is invoked, Swan will process all events in the event queue.
At this point, Swan's Event Handler takes control. After the SAIL function
completes, control is returned to the annotated program.

There are three basic states in Swan when it is active: Run, Step and
Pause. Essentially, the process may run continuously (i.e., in R u n state) or
step by step (i.e., in Step state). "Step" here refers to the execution of a code
segment ending at the next breakpoint set by the annotator. Swan lets the
annotator decide the size of the step because it is difficult, if not impossible, for
Swan to identify the interesting events in the annotated program.

The viewer interacts with an annotated program through the Swan Viewer
Interface (SVI) as shown in Figure 1. The SVI main window contains a control
panel and three child windows: the display window, I / O window and loca-
t ion window. The display window contains the graphs output by Swan. From
here the viewer can get information about nodes and edges, or pan and zoom
over the graph display area. The I/O window is used by the annotator and the
Swan system to display one-line messages and get input from the viewer.

The Swan Annotation Interface Library (SAIL) is a set of easy to use func-
tions for annotating a program so that its significant data structures and the
manner in which the data structures change during the execution of the program

523

can be visualized. Given an appropriate description of the data structures used
in a program, Swan is able to display them using different graphical elements
as specified by the annotator.

3 SwanGraph Layout Algorithms

A graph in Swan consists of a set of layout components. Each layout component
has nodes and edges. When the graph is displayed, the layout of nodes and edges
is determined by the type of the layout component they belong to. There are
several algorithms implemented in Swan to lay out different kinds of graphs
automatically. New graph layout algorithms can be integrated into Swan easily.

Linked lists and arrays are examples of layout components. Layout compo-
nents allow an annotator to build a more complicated structure than the simple
linked list or array. In Swan, a node in a layout component may be a parent node
of another layout component. Therefore, a simple linked list can be recursively
expanded to represent relatively complex structures.

Swan also contains an algorithm to draw rooted trees, based on the aesthetic
criteria suggested by Bloesch [1]. These criteria include aligning sibling nodes
horizontally; centering parent nodes between their leftmost and rightmost chil-
dren; keeping edges from crossing; and good horizontal and vertical separation.

Swan implements two algorithms to draw general undirected graphs. The
first distributes nodes along the circumference of a circle evenly (Figure 1).
Edges are drawn as straight lines between its two end nodes. The second algo-
rithm implements Kamada and Kawai's algorithm [3], which is a force-directed
placement method. Here, the total balance of a layout is considered to be more
important than simply reducing the number of edge crossings. Swan also in-
cludes a hierarchical layout algorithm for digraphs based on the procedures of
Eades and Sugiyama [2].

References

1. A. Bloesch, "Aesthetic Layout of Generalized Trees", SOFTWARE - - Practice
and Experience, Vol. 23(8), August 1993, pp. 817-827.

2. P. Eades and K. Sugiyama, "How to Draw a Directed Graph", Journal of Infor-
mation Processing, Vol. 13, No. 4, 1990, pp. 424-437.

3. T. Kamada and S. Kawal, "An Algorithm for Drawing General Undirected
Graphs", Information Processing Letters, Vol. 31, April 1989, pp. 7-15.

4. G.-C. Roman and K.C. Cox," "A Taxonomy of Program Visualization Systems",
IEEE Computer, Vol. 26, No. 12, 1993, pp. 11-24.

5. R. Tamassia and I.G. Tollis, Eds., Graph Drawing'9~, Lecture Notes in Computer
Science 894, Springer, Berlin, 1994.

