Abstract
A frequently encountered type of query in geographic information systems and multimedia database systems is to find k nearest neighbors to a given point in a multidimensional space. Examples would be to find the nearest bus stop to a given location or to find some most similar images when an image is given. In this paper, we develop an analytic formula that estimates the performance for nearest neighbor queries and characterize the efficiency of multidimensional index structures for nearest neighbor queries. The developed formula can be used directly in the query optimizers and the characteristics of efficiency will become the basis for the design of the index structure. Experimental results show that our analytic formula is accurate within some acceptable error range. It is exhibited that the efficiency of the index structure depends on the storage utilization and the directory coverage of it.
Preview
Unable to display preview. Download preview PDF.
References
S. Brin, “Near Neighbor Search in Large Metric Spaces,” Proc. of the 21 th Int'l. Conf on VLDB, pp. 574–584, 1995.
G.-H. Cha and C.-W. Chung, “HG-tree: An Index Structure for Multimedia Databases,” Proc. of the IEEE Int'l. Conf on Multimedia Computing and Systems, pp. 449–452, June 1996.
T. Chiueh, “Content-Based Image Indexing,” Proc. of the 20'h Int'l. Conf. on VLDB, pp. 582–593, 1994.
C. Faloutsos and I. Kamel, “Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of Fractal Dimension,” Proc. of the 13'h ACM Symposium on Principles of Database Systems, pp. 4–13, 1994.
A. Guttman, “R-trees: a dynamic index structures for spatial searching,” Proc. of the ACM SIGMOD Int'l. Conf. on Management of Data, pp. 47–57,1984.
B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer, “Towards an Analysis of Range Query Performance in Spatial Data Structures,” Proc. of the 12'h ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 214–221, 1993.
N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbor Queries,” Proc. of the ACMSIGMOD Int'l. Conf on Management of Data, pp. 71–79, 1995.
B. Seeger and H.-P. Kriegel, “The Buddy-Tree: An Efficient and Robust Access Method for Spatial Data Base Systems,” Proc. of the 16'h Int'l. Conf. on VLDB, pp. 590–601, 1990.
Y. Theodoridis and T. Sellis, “A Model for Prediction of R-tree Performance,” Proc. of the 16 'h ACM SIGART-SIDMOD-SIGART Symposium on Principles of Database Systems, pp. 161–169, 1996.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1997 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cha, GH., Park, HH., Chung, CW. (1997). Analysis of nearest neighbor query performance in multidimensional index structures. In: Hameurlain, A., Tjoa, A.M. (eds) Database and Expert Systems Applications. DEXA 1997. Lecture Notes in Computer Science, vol 1308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0022058
Download citation
DOI: https://doi.org/10.1007/BFb0022058
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-63478-2
Online ISBN: 978-3-540-69580-6
eBook Packages: Springer Book Archive