Abstract
We consider graphs in which it is possible to specify linear orderings of the sets of vertices, in uniform ways, by MS (i.e., Monadic Second-order) formulas. We also consider classes of graphs ℂ such that for every L\(\subseteq\)ℂ, L is recognizable iff it is MS-definable. Our results concern in particular dependency graphs of partially commutative words.
Preview
Unable to display preview. Download preview PDF.
References
AALBERSBERG I., ROZENBERG G., Theory of traces, Theoret. Comput. Sci. 60(1988)1–82.
AHO A., HOPCROFT J., ULLMAN J., The design and analysis of computer algorithms, Adison-Wesley, 1974.
CORI R., METIVIER Y., ZIELONKA W., Asynchronous mappings and asynchronous cellular automata, Information and Computation 106(1993) 159–203.
COURCELLE B., The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation 85 (1990) 12–75.
COURCELLE B., The monadic second-order logic of graphs V: On closing the gap beween definability and recorgnizability, Theoret. Comput. Sci. 80 (1991) 153–202.
COURCELLE B., The monadic second-order logic of graphs VI: On several representations of graphs by relational structures, Discrete Applied Mathematics, 54 (1994)117–149.
COURCELLE B., The monadic second-order logic of graphs VIII: Orientations, Annals Pure Applied Logic, 72(2)(1995).
COURCELLE B., The monadic second-order logic of graphs X: Linear orderings, http://www.labri.u-bordeaux.fr/∼courcell/ActSci.html, May 1994
COURCELLE B., Monadic second-order definable graph transductions: a survey, Theoret. Comput. Sci. 126(1994) 53–75.
COURCELLE B., Recognizable sets of graphs: equivalent definitions and closure properties, Math. Str. Comp. Sci. 4(1994) 1–32.
HOOGEBOOM H., ten PAS P., Recognizable text languages, MFCS 1994, LNCS 841 (1994)413–422.
OCHMANSKI E., Regular behaviour of concurrent systems, Bull. of EATCS 27(1985) 56–67.
PROSKUROWSKI A., Separating subgraphs in κ-trees: cables and caterpillars, Discrete Maths 49 (1984) 275–285.
THOMAS W., Automata on infinite objects, in “Handbook of Theoretical Computer Science, Volume B”, J. Van Leeuwen ed., Elsevier, 1990, pp.133–192.
THOMAS W., On logical definability of trace languages, Proce-edings of a workshop held in Kochel in October 1989, V. Diekert ed., Report of Technische Universität München I-9002, 1990, pp. 172–182.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Courcelle, B. (1995). Monadic second-order logic and linear orderings of finite structures. In: Pacholski, L., Tiuryn, J. (eds) Computer Science Logic. CSL 1994. Lecture Notes in Computer Science, vol 933. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0022254
Download citation
DOI: https://doi.org/10.1007/BFb0022254
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60017-6
Online ISBN: 978-3-540-49404-1
eBook Packages: Springer Book Archive