Skip to main content

On construction of resilient functions

  • Session 3: Encryption and Cryptographic Functions
  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1172))

Included in the following conference series:

Abstract

An (n, m, t) resilient function is a function f: GF(2)nGF(2)m such that every possible output m-tuple is equally likely to occur when the values of t arbitrary inputs are fixed by an opponent and the remaining n−t input bits are chosen independently at random. The existence of resilient functions has been largely studied in terms of lower and upper bounds. The construction of such functions which have strong cryptographic significance, however, needs to be studied further. This paper aims at presenting an efficient method for constructing resilient functions from odd ones based on the theory of error-correcting codes, which has further expanded the construction proposed by X.M.Zhang and Y.Zheng. Infinite classes of resilient functions having variant parameters can be constructed given an old one and a linear error-correcting code. The method applies to both linear and nonlinear resilient functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.H.Bennett, G.Brassard and J.M.Robert, “Privacy amplification by public discussion”, SIAM J. Comput. 17 (1988), 210–229.

    Google Scholar 

  2. J.Bierbrauer, K.Gopalakrishnan, and D.R.Stinson, “Bounds on resilient functions and orthogonal arrays”, Advances in Cryptology — CRYPTO'94, Springer-Verlag, (1994) 247–256.

    Google Scholar 

  3. B.Chor, O.Goldreich, J.Hastad, J.Friedman, S.Rudich and R.Smolensky, “The bit extraction problem or t-resilient functions”, Proc. of 26th IEEE Symp. on Foundations of Computer Science, (1985) 396–407.

    Google Scholar 

  4. P.Camion and A.Canteaut, “Construction of t-resilient functions over a finite alphabet”, Proc. Eurocrypt'96, Verlin: Springer-Verlag, 1996.

    Google Scholar 

  5. K.Gopalakrishnan, D.G.Hoffman, and D.R.Stinson, “A note on a conjecture concerning symmetric resilient functions”, Information Processing Letters 47 (1993), 139–143.

    Google Scholar 

  6. J.H. van Lint, Introduction to Coding Theory, Springer-Verlag, 1992.

    Google Scholar 

  7. T.Siegenthaler, “Correlation-immunity of nonlinear combining functions for cryptographic applications”, IEEE Trans. on Infor. Theory, Vol. IT-30 (1984) 5, 776–780.

    Google Scholar 

  8. D.R.Stinson, “Resilient functions and large sets of orthogonal arrays”, Congressus Numerantium 92 (1993), 105–110.

    Google Scholar 

  9. D.R.Stinson and J.L.Massey, “An infinite class of counterexamples to a conjecture concerning nonlinear resilient functions”, J. of Cryptology, 8 (1995), 167–173.

    Google Scholar 

  10. C.K.Wu, “On the independency of Boolean functions of their variables”, J. of Xidian University, (1988) 73–81. (in Chinese)

    Google Scholar 

  11. X.M.Zhang and Y.Zheng, “On nonlinear resilient functions (extended abstract)”, Proc. of Eurocrypt'95, Springer-Verlag (1995) 274–288; See also “Cryptographically resilient functions”, IEEE Trans. on Inform. Theory, (1996/97) to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Josef Pieprzyk Jennifer Seberry

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, CK., Dawson, E. (1996). On construction of resilient functions. In: Pieprzyk, J., Seberry, J. (eds) Information Security and Privacy. ACISP 1996. Lecture Notes in Computer Science, vol 1172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023289

Download citation

  • DOI: https://doi.org/10.1007/BFb0023289

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61991-8

  • Online ISBN: 978-3-540-49583-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics