Skip to main content

On period of multiplexed sequences

  • Session 5: Stream Ciphers
  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1172))

Included in the following conference series:

  • 150 Accesses

Abstract

Multiplexed and generalized multiplexed sequences for cryptographic and spread spectrum applications are introduced and their periods determined by using a recent result on the period of nonuniformly decimated sequences. Several published results are thus strenghtened and/or generalized. In particular, the period of the well-known multiplexed sequences is derived without the constraints assumed in the literature. The period of the so-called MEM-BSG sequences is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Anderson, ”Solving a class of stream ciphers,” Cryptologia, vol. 14(3), pp. 285–288, 1990.

    Google Scholar 

  2. H. Beker and F. Piper, Cipher Systems: The Protection of Communications. London: Northwood Publications, 1982.

    Google Scholar 

  3. G. R. Blakley and G. B. Purdy, ”A necessary and sufficient condition for fundamental periods of cascade machines to be products of the fundamental periods of their constituent finite state machines,” Information Sciences, vol. 24, pp. 71–91, 1981.

    Google Scholar 

  4. W. G. Chambers and S. M. Jennings, ”Linear equivalence of certain BRM shift-register sequences,” Electron. Lett., vol. 20, pp. 1018–1019, Nov. 1984.

    Google Scholar 

  5. W. G. Chambers, ”Clock-controlled shift registers in binary sequence generators,” IEE Proc. E, vol. 135, pp. 17–24, 1988.

    Google Scholar 

  6. J. Daemen, R. Govaerts, and J. Vandewalle, ”Cryptanalysis of MUX-LFSR based scramblers,” Proc. SPRC '93, Rome, Italy, pp. 55–61, 1993.

    Google Scholar 

  7. J. Dj. Golić and M. V. Živković, ”On the linear complexity of nonuniformly decimated PN-sequences,” IEEE Trans. Inform. Theory, vol. IT-34, pp. 1077–1079, Sep. 1988.

    Google Scholar 

  8. J. Dj. Golić and M. J. Mihaljević, ”Minimal linear equivalent analysis of a variable-memory binary sequence generator,” IEEE Trans. Inform. Theory, vol. IT-36, pp. 190–192, Jan. 1990.

    Google Scholar 

  9. J. Dj. Golić, M. Salmasizadeh, and E. Dawson, ”Autocorrelation weakness of multiplexed sequences,” Proceedings of International Symposium on Information Theory and Its Applications ISITA '94, Sydney, Australia, pp. 983–987, 1994.

    Google Scholar 

  10. J. Dj. Golić, ”A note on nonuniform decimation of periodic sequences,” Cryptography: Policy and Algorithms — Brisbane '95, Lecture Notes in Computer Science, vol. 1029, E. Dawson and J. Golić eds., Springer-Verlag, pp. 125–131, 1996.

    Google Scholar 

  11. S. W. Golomb. Shift Register Sequences. San Francisco: Holden-Day, 1967.

    Google Scholar 

  12. S. M. Jennings, ”A special class of binary sequences,” Ph.D. thesis, University of London, 1980.

    Google Scholar 

  13. S. M. Jennings, ”Multiplexed sequences: some properties of the minimum polynomial,” Proc. Workshop on Cryptography, Burg Feuerstein, 1982, Lecture Notes in Computer Science, vol. 149, T. Beth ed., Springer-Verlag, pp. 189–206, 1983.

    Google Scholar 

  14. S. M. Jennings, ”Autocorrelation function of the multiplexed sequences,” IEE Proc. F, vol. 131, pp. 169–172, April 1984.

    Google Scholar 

  15. R. Lidl and H. Niederreiter, Introduction to finite fields and their applications. Cambridge: Cambridge University Press, 1986.

    Google Scholar 

  16. K. C. Zeng, C. H. Yang, and T. R. N. Rao, ”On the linear consistency test (LCT) in cryptanalysis and its applications,” Advances in Cryptology — CRYPTO '89, Lecture Notes in Computer Science, vol. 435, G. Brassard ed., Springer-Verlag, pp. 164–174, 1990.

    Google Scholar 

  17. N. Zierler, ”Linear recurring sequences,” J. Soc. Indust. Appl. Math., vol. 7, pp. 31–48, 1959.

    Google Scholar 

  18. Specification of the systems of the MAC/packet family. EBU Technical Document 3258-E, Oct. 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Josef Pieprzyk Jennifer Seberry

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golić, J.D. (1996). On period of multiplexed sequences. In: Pieprzyk, J., Seberry, J. (eds) Information Security and Privacy. ACISP 1996. Lecture Notes in Computer Science, vol 1172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023296

Download citation

  • DOI: https://doi.org/10.1007/BFb0023296

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61991-8

  • Online ISBN: 978-3-540-49583-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics