Skip to main content

Inductive inference of optimal programs a survey and open problems

  • Conference paper
  • First Online:
Nonmonotonic and Inductive Logic (NIL 1990)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 543))

Included in the following conference series:

  • 129 Accesses

Abstract

The present paper surveys results and presents open problems concerning the limiting-effective synthesis of optimal programs for recursive functions given by input-output examples.

Five different formalizations of the intuitive notion “optimal program” are given. In particular, it is studied under what conditions the knowledge that every function from a function class does possess an “optimal program” is sufficient to infer such an “optimal program” in the limit for each function contained in the class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alton, D. A. (1976), Non-existence of program optimizers in several abstract settings. J. Computer System Sciences 12, 368–393.

    Google Scholar 

  • Angluin, D. and C. H. Smith (1987), Formal inductive inference, in Encyclopedia of Artificial Intelligence, (S. Shapiro, Ed.), John Wiley and Sons Inc.

    Google Scholar 

  • Blum, M. (1967), Machine independent theory of complexity of recursive functions. J. ACM 14, 322–336.

    Google Scholar 

  • Blum, L. and M. Blum (1975), Toward a mathematical theory of inductive inference, Information and Control 28, 122–155

    Google Scholar 

  • Freivalds, R. (1990), Inductive inference of minimal programs, in Proc. 3rd Workshop on Computational Learning Theory, Rochester, (M. A. Fulk and J. Case, Eds.), Morgan Kaufmann Publishers Inc., 3–20.

    Google Scholar 

  • Gasarch, W. I. and C. H. Smith (1991), Learning via queries, J. ACM, to appear, extended abstract in Proc. 29th Annual IEEE Symp. on Foundations of Computer Science, White Plains, 1988.

    Google Scholar 

  • Kinber, E., Gasarch, W. I., T. Zeugmann, M. G. Pleszkoch and C. H. Smith (1990), Learning via queries with teams and anomalies, Proc. 3rd Workshop on Computational Learning Theory, Rochester, (M. A. Fulk and J. Case, Eds.), Morgan Kaufmann Publishers Inc., 327–337.

    Google Scholar 

  • Gold, E. M. (1965), Limiting recursion, J. Symbolic Logic 30, 28–48.

    Google Scholar 

  • Machtey, M. and P. Young (1978), An introduction to the general theory of algorithms, North-Holland, New York.

    Google Scholar 

  • Rogers, H. Jr. (1967), Theory of recursive functions and effective com putability, Mc Graw-Hill, New York.

    Google Scholar 

  • Zeugmann, T. (1983a), A-posteriori characterizations in inductive inference of recursive functions, J. Information Processing and Cybernetics (EIK) 19, 559–594.

    Google Scholar 

  • Zeugmann, T. (1983b), On the synthesis of fastest programs in inductive inference, J. Information Processing and Cybernetics (EIK) 19, 625–642.

    Google Scholar 

  • Zeugmann, T. (1988), On the power of recursive optimizers, Theoretical Computer Science 62, 1988, 289–310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Dix K. P. Jantke P. H. Schmitt

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeugmann, T. (1991). Inductive inference of optimal programs a survey and open problems. In: Dix, J., Jantke, K.P., Schmitt, P.H. (eds) Nonmonotonic and Inductive Logic. NIL 1990. Lecture Notes in Computer Science, vol 543. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023325

Download citation

  • DOI: https://doi.org/10.1007/BFb0023325

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54564-4

  • Online ISBN: 978-3-540-38469-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics