Skip to main content

The operators min and max on the polynomial hierarchy

  • Structural Complexity I
  • Conference paper
  • First Online:
STACS 97 (STACS 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1200))

Included in the following conference series:

Abstract

Starting from Krentel's class OptP [Kre88] we define a general maximization operator max and a general minimization operator min for complexity classes and show that there are other interesting optimization classes beside OptP. We investigate the behavior of these operators on the polynomial hierarchy, in particular we study the inclusion structure of the classes max · P, max · NP, max · coNP, min · P, min · NP and min · coNP. Furthermore we prove some very powerful relations regarding the interaction of the operators max, min, U, Sig, C, ⊕, ∃ and ∀. This gives us a tool to show that the considered min and max classes are distinct under reasonable structural assumptions. Besides that, we are able to characterize the polynomial hierarchy uniformly by three operators.

A full version of this paper, including proofs of all claims, is available as Friedrich-Schiller-Universität Jena, Fakultät für Mathematik und Informatik, Technical Report Math/Inf/96/8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Balcázar, J. Díaz and J. Gabarró. Structural Complexity I. Springer Berlin-Heidelberg-New York, 2nd ed., 1995.

    Google Scholar 

  2. J.L. Balcázar, J. Díaz and J. Gabarró. Structural Complexity II. Springer Berlin-Heidelberg-New York, 1990.

    Google Scholar 

  3. Z.-Z. Chen and S. Toda. The Complexity of Selecting Maximal Solutions. Information and Computation, 119(1):231–239, 1995.

    Article  Google Scholar 

  4. W.I. Gasarch, M.W. Krentel and K.J. Rappoport. OptP as the Normal Behavior of NP-Complete Problems. Mathematical Systems Theory, 28:487–514, 1995.

    Article  Google Scholar 

  5. L. Hemaspaandra and H. Vollmer. The Satanic notations: Counting classes beyond # · P and other definitional adventures. SIGACT News, 26(1):2–13, 1995.

    Article  Google Scholar 

  6. J. Köbler. Strukturelle Komplexität von Anzahlproblemen. PhD thesis, Universität Stuttgart, Fakultät für Informatik, Stuttgart, Germany, 1989.

    Google Scholar 

  7. J. Köbler, U. Schöning and J. Torán. On counting and approximation. Acta Informatica, 26:363–379, 1989.

    Google Scholar 

  8. M.W. Krentel. The complexity of optimization problems. Journal of Computer and Systems Sciences, 36:490–509, 1988.

    Article  Google Scholar 

  9. M.W. Krentel. Generalizations of OptP to the polynomial hierarchy. Theoretical Computer Science, 97:183–198. 1992.

    Article  Google Scholar 

  10. M. Ogiwara. Characterizing low levels of the polynomial-time hierarchy relative to C=P via metric turing machines. Technical Report C-101, Tokyo Institute of Technology, Department of Information Science, Tokyo, Japan, 1991.

    Google Scholar 

  11. M. Ogiwara and L. Hemachandra. A complexity theory for feasible closure properties. Journal of Computer and Systems Sciences, 46:295–325, 1993.

    Article  Google Scholar 

  12. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

    Google Scholar 

  13. C. Papadimitriou and S. Zachos. Two remarks on the power of counting. Proceedings 6th GI Conference on Theoretical Computer Science, 269–276. Springer Verlag, Lecture Notes in Computer Science # 145, 1983.

    Google Scholar 

  14. S. Toda. Computational Complexity of Counting Complexity Classes. PhD thesis, Tokyo Institute of Technology, Department of Computer Science, Tokyo, Japan, 1991.

    Google Scholar 

  15. L.G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8:189–201, 1979.

    Article  Google Scholar 

  16. L.G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):410–421, 1979.

    Article  Google Scholar 

  17. H. Vollmer. Komplexitätsklassen von Funktionen. PhD thesis, Universität Würzburg, Institut für Informatik, Würzburg, Germany, 1994.

    Google Scholar 

  18. H. Vollmer and K.W. Wagner. The complexity of finding middle elements. International Journal of Foundations of Computer Science, 4:293–307. 1993.

    Article  Google Scholar 

  19. H. Vollmer and K.W. Wagner. Complexity Classes of Optimization Functions. Information and Computation, 120(2):198–219, 1995

    Article  Google Scholar 

  20. K.W. Wagner. Some observations on the connection between counting and recursion. Theoretical Computer Science, 47:131–147, 1986.

    Article  Google Scholar 

  21. K.W. Wagner. More complicated questions about maxima and minima, and some closures of NP. Theoretical Computer Science, 51:53–80, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rüdiger Reischuk Michel Morvan

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hempel, H., Wechsung, G. (1997). The operators min and max on the polynomial hierarchy. In: Reischuk, R., Morvan, M. (eds) STACS 97. STACS 1997. Lecture Notes in Computer Science, vol 1200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023451

Download citation

  • DOI: https://doi.org/10.1007/BFb0023451

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62616-9

  • Online ISBN: 978-3-540-68342-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics