
Compositional Design and Verification 
Communication Protocols, using 

Labelled Petri Nets 

of  

JEAN CHRISTOPHE LLORET 
VERILOG, 150 rue Nicolas Vauquelin, 31081 Toulouse cedex, 

PIERRE AZ]~MA, FRANCOIS VERNADAT 
LAAS-CNRS, 7 Avenue Colonel Roche, F-31077 Toulouse cedex 

1 Introduction 

This paper proposes a methodology to specify and verify telecommunication protocols 
by means of Labelled Predicate Transition nets (LPrT). In this paper, the following two 
principles are used as guidelines. 
M o d u l a r  Spec i f ica t ion  The structured system decomposition is based upon commu- 
nication primitives. The rendez-vous communication paradigm of ISO language LOTOS 
is extended to multi-gate rendez-vous. Several input/output  events may appear on a 
single transition: Petri Net transitions are labelled by sets of communicating events. 
I n c r e m e n t a l  D e s c r i p t i o n  A single system is described with respect to several levels 
of abstraction. Each new abstraction level supplies a more detailed model and new 
properties are to be verified. Communication by multi-rendezvous is a first means of 
abstraction. A second means concerns the data part. To facilitate data abstraction 
in a LPrT net, logic programming (Prolog) is used as a declarative and prototyplng 
language. 

The main contributions of this paper concern the support of former principles. 
Multi-rendezvous is introduced in a stepwise approach, from basic semantical models, 
that is Labelled transition systems (LTS) and Labelled Petri Nets (LPN), to labelled 
Predicate Transition nets. The labelled Predicate Transition nets provide the highest 
abstraction level and are the user interface model. This stepwise definition presents the 
following characteristics: 
didactical: Synchronization aspects are studied in the context of labelled Petri Nets. 
Communication with value passing is only introduced for Labelled Predicate transition 
nets. 
analytical: Verification techniques are based on the analysis of the LPrT model be- 
haviour. A specific technique, so-called projection or service computation, is derived 
from observational equivalence [MilS0]). The global service results from the compo- 
sition of sub-net services. A modular design of labelled PrT nets entails a modular 
verification. 

The composition of Labelled Petri Nets is described in Section 2. A value passing 
mechanism and the parameterization of Petri Nets are illustrated in Section 3 by means 
of a specific application. 
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2 C o m p o s i t i o n  o f  m u l t i - e v e n t  L a b e l l e d  P e t r i  N e t s  

This section introduces Labelled Petri Nets and multi-rendez-vous operator [Lp~ as the 
core language (no value passing) and the basic composition operator, respectively. 

The expressive power of this composition operator results from the use of multi-events 
actions which enable to specify rendez-vous among several (mere than two) transitions, 
on the same or distinct interaction points. This multiple-rendez-vous is an abstraction 
with respect to implemented communication mechanisms. In the context of the advo- 
cated progressive modelling, multi-rendez-vons enables the design of abstract and very 
compact models. 

2.1 Mul t l - event s  act ions  

Communication actions are defined according to the following principles: 
events: An event is the most elementary communication unit. Let a be the set of gates, 
let V be the set of interactions. An event is a couple (g, v) which consists of gate g and 
interaction v. Event (g, u) is denoted g(v).  Let gate be the function which returns the 
gate of an event (gate(g(v)) = g) and let ~ be the set of events. 
1. Mul t i -even t  act ion:  an action describes several communication events that are 
performed synchronously on different gates. A transition is labelled by an action. Be- 
cause an action refers to a set of events, the expressiveness is increased with respect to 
the reference languages CCS [MilS0] and LOTOS in which an action is either a single 
(observable) event or internal action i. 
2. A single event  pe r  ga te  that is gate is an unshared resource. A service access 
point is dedicated to a single entity. Consequently, two distinct events on the same gate 
do not belong to the same action. 
Formally, an action A is a subset of events (A C ~) such that, 
re1, c2 e A, el # e~ ~ #ate(c~) ~ gate(e~). 

Action 0 is denoted i (no event = internal action). 

Def ini t ion 2.1 Label led  Trans i t ion  sys t em label l ing 
Let proc be a labelled transition system; let T be proc transition set. Let ap,oc C 

be a subset of gates, let V be the set of interactions. 
An event e, connected to a gate in ~proc, is a couple (gate, interaction) C ~proc × V.  e 
is denoted gate(interaction).  
proc labelling is couple (aproc,ln~o~) where lproc is the label function. The domain of 
label function lpro~ is transition set T. The range of function l is the subset of actions 
constituted by events connected in aproc. 
In the sequel, £p~o~ denotes couple (ap~oc, l~roc). 

2.2 M u l t l - r e n d e z - v o u s  Compos i t i on  of  Labe l led  Trans i t ion  
S y s t e m s  

Labelled Transition Systems supply an operational semantics to Labelled Petri Nets. 
The multi-rendez-vous of labelled transition systems is the interpretation of multi- 
rendez-vous of Petri nets. 
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Def in i t ion  2.2 Labelled Transition System 
A labelled transition system proe is a 5-tuple (S, T,  - t  --*t~r, s0, L) where: 

• S set of states. 
• T set of transitions. 
• - t  --*C ,q x S state change performed by transition t. 
• so E S, initial state. 
• L is a labelling as defined above. 

Two labelled Transition systems procl and proc2 are composed relative to their com- 
mon gates. 
L T S  c o m m o n  gates:  the set of common gates apro~l N aproea is denoted tzn. 
events  to  b e  synchronized:  events to be synchronized of label l(t) are events whose 
gate is a shared gate between proc: and proc2. Notation is 8yncan(l(t)): 
8ync.oO(t)) = {e ~ qt) I gate(e) ~ ~}. 

Defin i t ion  2.3 L T S  composition operator ]Lrs Let proc~ = (Si, T i , - t i  - % e ~  
,8~,0, ~i)/=1,2 be two LTS. 

Composed LTS procl [LTS proc2 is (31 [ $2, T1 [ T~,- t  --~terllr2,81.0 I 82,0, L1 [ L~) 
where: 

~1 ] ~a is proex I proc2 labelling defined by set of gates (c~p,oc~ U ~p,oe~) and labelling 
function I defined on domain Tx ] T~. 

Function I is defined together with composed states and composed transitions by the 
following derivation rules ( 8i, 8~ and tl are states and a transition of procl respectively): 

I n d e p e n d a n t  execu t ion  

(1 )  81 - -  t l  : li --* s~ 
81"l 8 2 - - t l  : ll ~ 8~ I 82 

82 - t= : 1= --* s ;  . . . .  

(2) 81 82 - t2 : t2  -~ 811 s~ 

S y n c h r o n i z a t i o n  

(3) 81 - t1:  ll  ~ 8~, 82 - t2 !,,,,,!,2,,--, 8~ 
81 1 82 - t l  I t2:  Ox 0 12) --, 8~ I s~ 

( sync .n ( l l )  = 0) 

( sync . .o ( l , )  = O) 

(syncanClx) = syncanCl~)) 

2 . 3  L a b e l l e d  P e t r i  N e t s  

Firstly, Labelled Petri Nets are defined as Place/Transition nets of capacity one, asso- 
ciated with a labelling as defined above. 
The behaviour of a labelled Petri Nets is then introduced as a labelled transition sys- 
tem. The marking graph and the step graph are two possible candidates for describing 
a net behaviour. In the step graph, parallel executions are explicitly taken into account 
and thus a more precise representation of the net behaviour is given. Labelled Petri 
Net operator ILPN is interpreted on step graphs by Labelled Transition System operator 
ILTS in such a way that diagram 1 commutes. 
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LPNbehavi°urLTS 

~ b e h a v i o u r  
L P N  , LTS 

Figure 1: Semantics of Labelled Petri Nets composition "ILPN" 

LPN: Labelled Petri Nets 
LTS: Labelled Transition Systems 
B (N): net N behaviour (step graph) 

VN~, N2 E LPN,  B (N1 ILPN N2) = B (N,) 

Defini t ion  2.4 Labelled Petri Net 
A labelled Petri Net is a 6-tuple N = (P, T,prc,post,Mo, ~N) where: 

• P is a set of places; 
• T is a set of transitions, P n T -- 0 
• pre, post : 7" --+ P(P) are two mappings which connect a transition to two sets of 
places called preconditions and postconditions respectively. 
• M0 is a set of places called initial marking. 
• £N is the net labelling defined by couple (c~N, IN) as introduced previously. 

Ezarnple: net N1, Fig 2, depicts concurrent transitions tl and t~ (places are circles, 
transition boxes inscribed by a transition name; if a transition box is connected to a gate, 
the edge is annoted by the value of the corresponding transition event; the preconditions 
and postconditions of a transition are the input and output places respectively; places 
with a token belong to the initial marking). 

Def ini t ion 2.5 Firing rule The transition firing rule proposed for "augmented condi- 
tion/event nets" in [PD87] is adopted. But the definition of parallel transitions differs 
because an interaction point is a non shared resource: with respect to labelled Petri nets, 
two transitions connected to a common interaction point cannot be fired in parallel. 

Let M be a marking (or set of places) and T a set of transitions (set T is called step). 
T is M enabled (notation M[T >) iff 
. T transitions are pairwise independent that is two distinct transitions tx, t2 E T share 
neither a place (place independance: (pro(t1) U post(tl)) N (pre(t2) U post(t2)) = 0) nor a 
gate (gate indcpcndance: gate(lN(tl)) N gate(IN(t2)) = 0, where gate(IN(t)) = {gate(e) [ 
e IN(t ) ) ) .  
. preconditions of T transitions are fulfilled (pre(T) C M, with pre(T) = Uter pre(t)) 
and postconditions which are not preconditions are not fulfilled (MN (post(T)\pre(T)) = 
¢). 

Marking M' results from firing step T in marking M (notation M[T > M') iff step 
T is enabled in M and M' = (M \ pre(Y)) U post(T). 

The behaviour of a LPN is a LTS such that  a state is a reachable marking and a LTS 
transition is a firable step. 

Def in i t ion  2.6 LPN Behaviour 
Let N = (P, T,  pre, post, M0,/~N) be a LPN. Reachable markings and firable steps of 

net N are respectively the smaller sets M0[> and M0[ defined by: 
* Mo~ [Mo > 

e If M E [Mo > and T enabled in M with M[T :> M' then M' E Mo[:> and T E Mo[. 
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Net behaviour is LTS, B (N) = (M0[>, M0[, - T  --*~'~uo[, ~lr0, Ls) where: 
• change of state in B(N) corresponds to step execution:M,M' E M o [ > , M - T  --* MS ¢~ 
M[T > M'. 
• Behaviour labelling ~8 = (~v,IB) directly follows net labelling: the gate set of LB is 
~N one, i.e. 'Y8 = aN. Labelling function 18 is the canonical extension to sets of the 
net transition labelling function IN: VT G M0[, IB (T) = U t ~  IN(t). 

(a) •Aus! Apr! 

~ ~ p r  

(b) 
_ Aus? Apt! _ 

NI ILPN N2 in 

Pl P2 

Figure 2: Parallel composition of Labelled Petri Nets 

2 . 4  M u l t i - r e n d e z - v o u s  C o m p o s i t i o n  o f  L a b e l l e d  P e t r i  N e t s  

Operator ILPN is defined in order to simulate composition of behaviours. The three 
following characteristics of net multi-rendez-vous are worth noticing: 
1. Parallelism between trarmitions is taken into account When composing two labelled 
Petri nets, two transitions of a net, which fire in parallel, may be merged with a transi- 
tion of the other net (on Fig 2 transition (tl,t~) [ZPN (ts) results from the merging of 
transition sets (tl,  t~) and (ts}). 
2. Minimal mergings The possibility of running synchronously (transitions are in paral- 
lel) is distinguished from a necessary synchronization (transitions are merged). In the 
composition of two nets, all synchronization possibilities are preserved but the number 
of mergings is minimal. 
3. The derivation of a composed net N1 ILPN N~ does not require computation of be- 
haviours B (N1) and B (N,). 

Let Ni = (P~,T~,prel, posti,Mo.~,f.~)i=l.~ be two LPN with labelling L~ -- (o~,/~)~=1,2 
and let an be the common gate alphabet. 
Preliminary definitions: 
Trans i t ion  t o  be  merged :  Transition t of net N1 or N~ is to be merged iff there is at 
least one event to be synchronized in t label (recall that an event to be synchronized is 
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an event whose gate belongs to common gate set ¢~n). 
M e r g e a b l e  Trans i t ion  sets:  Two transition sets T I C  T1 and T2 _C T2 are merge- 
able iff TI (resp. 2"2) is a set of transitions to be merged, pairwise independent and the 
set of events to be synchronized of T1 transitions equals the one of T2 transitions (i.e. 
~y~e,o (l~ (I'1)) = ~y~c~o (l~ (r~))). 
M i n i m a l  m e r g e a b l e  Trans i t ion  sets:  T1 and T~ are minimal mergeable transition 
sets iff TI are mergeable transition sets and if it is not possible to partition T1, 2"2 merging 
in smaller ones that is: for all T~ C T1 and T~ C T2, T~ and T~ are not mergeable. 

Def in i t ion  2.7 LPN composition operator [LP• 
Composed net N1 [LPN N2 is (PI U P2,7"1 [LPN T~,pre, post, Mx,o U M2,0, L1 [LPN ~2) 

where: 
• 7"1 ]LPN 7"2 transitions are, on the one hand, TI and T~ transitions which are not to 
be merged and, on the other, merged transitions T1 ]LPN T2 where Tx, T2 are minimal 
mergeable transition sets. 
• Preconditions and postconditions of a nonmerged transition are unchanged in com- 
posed net. Pre and postconditions of merged transition TI [LPN T2 are defined as the set 
union of the respective pre and postconditions: pre(Tx [~PN T2) = prex(T1) U pre~(T2) 
and similarly for posteonditions. 
• New labelling L1 [LPN ~2: gate sets of the composed nets are added; the labelling 
of a nonmerged transition is unchanged; labelling of merged transition 211 [LPN T2 is 
li  (rl) u (T2). 

Example: figure 2b depicts composed net NI ]LPN N~. 

P r o p o s i t i o n  2.1 Properties of multi-rendez-vous composition 
Operators [~Ts and [LPN are commutative and associative (up to state and transition 

bijective renaming). 
The behaviour of a composed net is the composition of behavlours: B (N1 ]LPN N2) = 

B(Arl) ILTS B(N2) (up to state and transition bijective renaming). 

3 A p p l i c a t i o n  

This section introduces Labelled Predicate Nets by means of an example. LPrT nets are 
a parameterized version of LPN; they are also PrT nets [Gen88] extended with labels, 
and featuring, in particular, direct execution in Prolog. 

A remote reading mechanism, the so-called Telereport [HRJ89] application layer, is 
first modelled then analysed. 

3.1 M o d e l s  

Application entities Aue and A~r cooperate through a nonpeffect session service ,9 (see 
Fig 3) in order to provide a remote reading service to a user process. 
App l i ca t i on  use r  service.  The interface between the user process and entity Au, 
is of particular interest since it determines the external service provided to the user 
process: user request req(C) is parameterized by requested data code C and is issued 
on Service Access Point, A~?;  confirmation eonf(Mess) is issued on SAP A,°! and can 
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be of 3 types: Mess value is either "error": transmission by session service has failed, 
or "nak": no data of code C is available to the provider process, or C read value Va/c. 
Entity A~ is in charge of recovery if a transmission error occurs in the session service. 
Let NRs#,ffi be the maximum number of consecutive recoveries with respect to the same 
read request. To study the correctness of the recovery mechanism a specific model of 
session service has been designed: session service may lose consecutively at most NEMaffi 
messages. The provided service depends on relative values of parameters NRMoffi and 
NEMo,. 

Conf igura t ion .  Three configuration classes are distinguished: (1) Perfect session 
service (no error NEmffi = 0); (2) Faulty session service but less errors than re- 
coveries ( JVE=~ < ~ R ~ , ) ;  (3) Unreliable service: more errors than recoveries ( 
NE~ffi > NR~z) .  Furthermore, the requested code may either be available to the 
provider (expected confirmation with value) or not (expected confirmation: "nak"). 
The set of potential configurations, and the database facts are the following: 

NE~ra~ 

code e I 

code c: 

eonfo [ conf; [ eonf: 
0 succ(O) succCsucc(O)) 

succ(O) 
cl available --* value vl 
e2 not available --* nak 

database 
MazErr(NE,~z). 
MazRecover( sucr(O) ). 

codeType{ c2). 
Session Service  N e t  (see Fig 3, net S) 
A request req(C) or a response resp(Mess) may be conveyed without error from user 
entity Ae, to provider entity A~ respectively and vice-versa. Primitive req becomes ind 
and resp becomes conf. The corresponding normal transitions are transmitReq and 
transmitResp. Request req(C) or response resp(Mess) may either be lost or incor- 
rectly transmitted. This corresponds to transitions loseReq and loseResp. The number 
of consecutive errors before a reset signal (transition reset) is saved by variable K and 
bounded by logical condition infMazErr(K). Predicate infMazErr(K) is defined by 
the following clause: 
/* infMazErr(K) is true if K < NE,~s */ 
infMazErr(K) : - mazErr(NE,~ffi), /* database fact */ 

inf(K, NEMaffi). /* true if K < NE~z  */ 
The occurrence of an error results in sending message eonf(error) to user entity Ae, 

(transition error). 

U s e r  en t i ty  o f  App l i ca t ion  p r o t o c o l  (see Fig 3, net A,,) 
The normal transition sequence is (1) init receipt of user process request req(C), (2) 
send request transmission to session service, (3) end confirmation conf(Mess) is re- 
ceived and returned to the user process, if Mess ~ error, that is Mess is a code value 
or "nak").  When a session service error is detected, via primitive conf(error)), recovery 
may take place, i.e. user process request is repeated. Transition recover is enabled if 
less than NR~ffi errors have occured; this enabling condition, infMazReeover(K), is 
defined by the following clause: 
inyMazRecover(K) : -  MazRecove,(NR.,ffi) 

inf(K, NR~,). 
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In case of confirmation conf(error) and if the maximum number of recoveries is ex- 
ceeded, transition end fires. Signal reset is sent to session service. 

P rov ide r  en t i ty  o f  Appl ica t ion  p ro toco l  (see Fig 3, net ApT) 
Provider entity is initially ready to receive read indication ind(C): transition indication 
is enable; procedure readCode(C, ValOrNak) of transition response performs a read 
action; when C is available (eodeVal(C, Val) in database) the value of Va/ is substi- 
tuted for variable ValOrNak; if C is not available variable ValOrNak takes value nak, 
negative acknowledge. Procedure readCode Ts defined by the following net clause: 

readCode(C, Val) : - eodeVal(C', Val). code available 
readCode(C, nak) : - \ + eodeVo.l(C, Val). code not available 

3 .2  V e r i f i c a t i o n  

An ~easy to use ~ verification technique is to compute the service provided by the pro- 
tocol and to compare it with the expected one. 

The global service provided by a behaviour (LTS) is a reduced LTS, minimal with 
respect to the state number, which preserves properties of observed communication ac- 
tions; with respect to gate set G, a local service is derived from the behaviour after the 
hiding of events which occur on gates outside G. The standard observational equiva- 
lence [Mil80] is used to compute the service; observable actions sequences and deadlocks 
are preserved. 

Service Der iva t ion  
Let N be a LPN system composed of three sub-nets: N --- N1 ILPN N2 [LPN N$. Net 
service $ (N) is defined as the service provided by the behaviour of N, i.e. $ (BL?N(N)). 
There are two basic ways to compute service $(N); a third one may also be derived in 
a combined manner: 
Service compoMtior~ individual subnet services are computed first, then they are com- 
posed. We have, $(N) ~ $(N1) 1£T$ $(N2) ILrS $(Ns). Partial verifications may 
be conducted on individual services, and then reused for the verification of the global 
service. Furthermore, as services are reduced behaviours, composition of individual ser- 
vices can be more efficient than computation of the global netbehaviour. 
LPN cornpoMtion sub-nets are composed to obtain a global net whose behaviour and 
service are derived in a second step. This approach is mandatory when individual be- 
haviours are unbounded, even if the global behaviour is bounded. For example, in case 
of PrT nets, unbounded net may be a fifo queue model. 
Combined approach: The former computations produce an equivalent result because 
diagram 1 commutes and because Milner observational equivalence ~ is a congruence 
with respect to ILrs. A combined approach may still be useful to gain a better insight 
into protocols. For example, $(N) ~ $(N1 ILPN N2) ILT$ S(N$)-" on the one hand Ns 
individual service is computed, and on the other net composition N1 ILPN N2 may be 
performed. 

Telerepor t  Service Local service provided to user process is depicted in Fig 4 (transi- 
tions represent application service primitives). As long as errors are relatively few, i.e., 
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Figure 3: L P r T  nets of Application entities Au~ and Apt and session service S 
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in configurations confo, cony1, the provided service is error-free: the recovery mecha- 
nism plays the intended role. Configuration confs is a degraded configuration: errors 
may be too numerous, and the application service may not deliver the expected answer 
(vl or nak). Correct status error is however delivered to user process. Confirmation 
cony(error) follows an internal transition after the last (unrecovered) error. 

conl~v,) _ ~ ~ conf(nak) 

cony 0 (no rotor) and cony 1 (error recovered) 

co . f ( v , )  _ ~ co~fcn~) 

- -  f T ~ C l )  ~on~ 

cony 2 (error possibly not recovered) 

Figure 4: Application service with respect to user process 

4 C o n c l u s i o n  

The introduced composition and verification techniques are implemented in the available 
software PIPN. The tool enforces structured and incremental approaches. It includes 
a graphical SADT-Iike editor that defines system architecture. The compiler computes 
global nets, as a result of subnet composition. State space can be interactively explored 
by means of the simulator. Finally, the complete behaviour can be computed and then 
reduced to protocol service. A model checker for CTL logic is also available. A current 
issue is to combine logic and service verification in a combined approach [PA89]. 
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