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A b s t r a c t  

In this paper we describe a method for the obtention of the minimal transition system, rep. 
resenting a communicating system given by a set of parallel processes, avoiding the complexity 
of the non minimal transition system. We consider minimization with respect to observational 
equivalence, but the method may be adapted to any other equivalence. 

An interesting method to achieve this goal is to proceed by stepwise composition and mini- 
mization of the components of the system. However, if no precautions are taken, the intermediate 
state graphs generated by this method may contain a lot of transitions which are impossible in 
the whole context. We give here a variant of this method which allows to avoid these impossible 
transitions by taking into account at each composition step a guess of the interface behaviour of 
the context. This "interface specification" must be provided by the user. The method is based 
on a reduction operator for the composition of a subsystem with its interface specification, which 
is similar to the parallel operator but introduces undefinednes8 predicates whereever the inter- 
face "cuts off" a transition. The parallel operator is defined in a way that these undefinedness 
predicates disappear again in the full context if and only if the corresponding transition is in fact 
impossible in the whole system. 

The e~ciency of the method depends in fact on the accuracy with which the designer is able 
to approximate the possible sequences of the context, but its correctness does not. The proof of 
the correctness of the method is based on a preorder relation similar to the one defined by Walker. 

1 M o t i v a t i o n  

Many tools for the automatic analysis or verification of finite state concurrent systems are based 
on the construction of the global state graph of the system under consideration (cf. [CES83,FSS83, 
CPS89,CPSb89]). Thus they often fail because of the state ezplosion problem: the state space of a 
system potentially increases geometrically in the number of its parallel components. To overcome 
this problem techniques have been developed in order to avoid the construction of the complete 
state graph (cf. [BFH90,CLM89,C1Steg0,Fer88,JosgT,KuMcM89,Kr89,LaTh88,LaXig0,Pnu85,ShGrg0, 
StGr89,Wa88,Win90,WoLo89]). In this paper we present a method for the compositional minimization 
of finite state concurrent systems, which is practically motivated by the following observation: 

For the verification of a system it is usually sufficient to consider an abstraction of its 
global state graph, because numerous computations are irrelevant from the observers point 
of view. Such abstractions often allow to reduce the state graph drastically by collaps- 
ing semantically equivalent states to a single state, which does not affect the observable 
behaviour. For example, the so obtained "minimization" of a complex communication 
protocol may be a simple buffer. 
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Let us refer to the size of the original state space of a system S as its apparent complexity, and 
to the size of the minimized state space as its real complexity. The intention of our method is to 
compositionally construct the minimal system representation and therefore to avoid the apparent 
complexity. Unfortunately, the straightforward idea to just successively combine and minimize the 
components of the system is not satisfactory, because "local" minimization does not take context 
constraints into account and therefore may even lead to subsystems with a higher real complexity than 
the apparent complexity of the overall system. This is mainly due to the fact that  parts need to be 
considered that  can never be reached in the global context. Partial or loose specifications allow to  
"cut off" these unreachable parts (see section 4.3). As in [C1Steg0,Kr89,LaTh88,ShGrg0,wa88]) we 
will exploit this feature to take advantage of context information. Furthermore, we will refer to the size 
of the maximal transition system that is encountered by our method as the algorithmic complexity. 

Our method is tailored for establishing 9 ~ ~b, i.e. whether 9 satisfies the property ~b, when 9 is a 
system of the form (PlIII~ "'" IlI._~ P- ) (L). Here we assume the processes Pi already as to be given as 
transition systems, I i  to be interface specifications, namely supersets of the set of sequences that  can 
be observed at the associated interfaces, It to represent parallel composition and (L) a hiding operator 
that  abstracts from the activities considered as internal by transforming them into the unobservable 
action r (see Section 3.2). 

The point of our method is the successive construction of partially defined transition systems P/ 
with the following properties: 

1. Pi is less specified than Pill .... II Pi, i.e. is smaller in the sense of ~ (see Definition 4.2). 

2. Pn is semantically equivalent to the full system (PIll "'" 11P,, ) (L), whenever the interface speci- 
fications are correct. 

3. P/ has the least number of states and transitions in its semantic equivalence class. 

Subsequently, the validation of P~ ~ ~b completes the proof. Of course, this requires that  qb is 
preserved by the semantic equivalence under consideration. In this paper, we are dealing with a 
refinement of observational equivalence (see Definition 4.1)). However, the method easily adapts to 
other equivalences as well (see Section 5.3). 

Important factor in this approach are the interface specifications, which should be provided by the 
program designer. However, the correctness of the method does not depend on the correctness of these 
specifications. They are only used to "guide" the proof. Thus wrong interface specifications will never 
lead to wrong proofs. They may only prevent a successful verification of a valid statement. It should 
be noted that the total definedness (see Definition 3.1) of P ,  already implies Pn ~d 9 ,  which is enough 
to guarantee successful verification of all (~d_ consistent) properties satisfied by 9 .  

The power of our method is demonstrated by means of a setup that  handles the mutually exclusive 
access of processes to a common resource. In fact, in this example, the apparent complexity is expo- 
nential, whereas the algorithmic and the real complexity are linear (see Section 6). This is illustrated 
by means of numerical results that have been obtained using the Aldebaran verification tool [Fer88]. 
The method can easily and efficiently be implemented in systems like the Edinburgh Concurrency 
Workbench [CPS89] or the Aldebaran verification tool [Fer88]. 

2 R e l a t e d  work  

A great effort has been made in order to avoid the construction of the complete state graph, and 
therefore to avoid the state explosion problem. Roughly, the proposed methods can be split into 
two categories, the compositional verification and the compositional minimization. Characteristic for 
the former category is that the global system need not be considered at all during the verification 
process, and for the latter that a minimal semantically equivalent representation of the global system 
is constructed. This minimal representation can subsequently be used for all kinds of verification. 
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A pure approach to compositional verification has been proposed by Winskel in [Wing0], where 
rules are given to decompose assertions of the form ~v ~ ~b depending on the syntax of the program 
and the formula ~. Unfortunately, the decomposition rules for processes involving the parallel operator 
are very restricted. Larsen and Xinxln [LaXig0] follow a similar line, however, their decomposition 
rules a re  based on an operational semantics of contexts rather than the syntax. 

In order to deal with the problems that  arise from parallel compositions Pnueli [Pnu85] proposed 
a "conditional" inference system, where assertions of the form ~bT~b can be derived, meaning that  
the program 7 ~ satisfies the property ~b under the condition that  its environment satisfies ~b. This 
inference system has been used by Shurek and Grumberg in [ShGr90], where a semi-automatic modular 
verification method is presented, which, like ours, is based on "guesses" for context specifications. 
However, in contrast to our method it requires a separate proof of the correctness of these guesses. 

Josko [Jos87] also presented a method, where the assumptions on the environment of a component 
are expressed by a formula, which must be proved in a separate step. The main disadvantage of his 
method is that the algorithm is exponential in the size of the assumptions about the environment. 

A method of the second category was proposed by Halbwachs et al. in [BFHg0]. It constructs directly 
a transition system minimized with respect to bisimulation by successive refinement of a single state. 
In this method, which has been tailored for Lustre [CHPP87], symbolic computation is needed in order 
to keep the expressions small which, in general, may grow exponentially. 

Another approach of this category was presented by Clarke et al. [CLM89]. They exploit the 
knowledge about the alphabet of interest in order to abstract and minimize the systems components. 
Using (L} operations together with an elementary rule for distributing them over the parallel operator 
(see Proposition 3.3) our method covers this approach. 

Krumm [Kr89] considers minimization on the fly and reduction with respect to an interface spec- 
ification that must be provided by the system designer. Whereas the former is limited, because the 
complete state graph need to be traversed, the lat ter  requires a separate proof of the correctness of 
the interface specification. This contrasts with our method, where such a proof is unnecessary. 

Larsen and Thomsen [LaTh88], and Walker [Wa88] use partial  specifications in order to take context 
constraints into account. Our method is an elaboration of theirs. It uses a more appropriate preorder 
allowing to define a strategy for (semi-)automatic proofs where the required user support is kept to a 
minimum. 

The methods proposed in [WoLo89,StGr89,KuMcM89] are tailored to verify properties of classes 
of systems that are systematically built from large numbers of similar processes. These methods are 
somewhat orthogonal to ours. This suggests to consider a combination of both types of methods. 

3 Representation of  Processes 

In this section, we establish our framework in which processes (systems) are labelled transition systems 
extended by an undefmedness predicate with parallel composition and hiding defined on them. The ex- 
tension provides a notion of partial definedness, which naturally leads to a specification-implementation 
relation between processes (see section 4.3). 

3 . 1  E x t e n d e d  T r a n s i t i o n  S y s t e m s  

An extended finite state transition system T is a quadruple (S, -4U {r}, -% T) where 

1. S is a finite set of processes or states; 

2 . . 4  is a finite alphabet of observable actions, mad ~- represents an internal or unobservnble action 
not in ,4; 

3. --* is a mapping associating with each a E -4U {r}, a transition relation --2-* C_ S x S; 
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4. T c_ S x 2 AU {'} is a predicate expressing guarded undefinedness. Given (p, L) E T we write pX a 
for a E L. 

Typically S is a set of program states, and the relationship p--~-,q indicates that  p can evolve to  q 
under the observation of a. Finally, pX a expresses that  an a-transition would allow p to enter an 
undefined state. We say that p is a-undefined in this case. Thus, transition systems involving the 
undefinedness predicate are only partially defined or specified. It is this notion of partial  specification 
together with its induced partial order which provides the framework for proving our method correct. 

Processes are rooted transition systems, i.e. pairs consisting of a transition system and a designated 
start  state. Given a transition system T = (S, .40 {T},--% T), we identify (as usual) a state p E S 
with the process ((Sp, .A~U {r},--,p, Tp),p), where 

• Sp is the set of states that are reachable from p in T, 

• ¢4~=J[  and 

• --*p and Tp are --* and T restricted to Sp, respectively. 

In future, obvious indices will be dropped. The following property characterizes the subset of "stan- 
dard" transition systems. 

Def in i t ion  3.1 A process is totalIy defined if its undefinedness predicate T is empty. 

3 . 2  C r i t i c a l  P r o c e s s e s  

We now introduce a binary parallel operator [[ and unary hiding operators (L), where L is a set of 
observable actions. Intuitively, p[[q is the parallel composition of p and q with synchronization of 
the actions common to both of their alphabets and interleaving of the others, and p(L) is the process 
in which only the actions in L are observable. The transition relations for the resulting processes are 
defined by: 

1. P - ~  P' a E L 2. P - ~  f a ~ L 
p ( i )  - ~  f ( L )  p(L) ~ f ( L )  

q__2., q, 
P -?'* P' ( a ¢ .Aq ) 4. pllq ~...~ pllq, ( a ~ .A1, ) 

3. PHq - ~  tfHq 

p__~ p' q_2_. q' 
5. a # r  

Pllq " ~  P~llq' 

their undefinedness predicates by: 

pTa 6. ~ a E L  7. pTa a ~_L 
p<L)T r 

8. pTa (p]]q)Ta (a¢ 'A~°rq- -Y- 'q ' )  9 . -  
qTa 

(p[[q)T a 
( a ~ J t ~  or p - - ~ p  I) 

10. pTa qTa 
(pllq)Ta 
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and their alphabets by .AML ) = .Ap \L  and .A~I , = , ~ U . ~ .  F i n n y  Sp(L) = {P'(L)IP' 6 Sp} and 
8~1 q is the set of pairs f i l e  that are reachable in Pflq. 

Thus PT a (qT a) implies (p[iq)T a, whenever q (p) does not preempt the execution of a, i.e. whenever 
a ~ ~lq or q - %  q~ ( a ~ .4p or p - % / / ) .  Remember that ~ ~ .4~ for any p, thus - ~  is defined by 
the clauses 2, 3 and 4, and T~ by clauses 7, 8 and 9. The exact meaning of this definition will become 
clear in Section 5.2, where we introduce the reduction operator. We have: 

P ropos i t i on  3.2 1t is associative and commutative. 

Thus processes of the form (PlI["" Itpn)(L} are well-defined. Our method will concentrate on this 
form 1. 

P ropos i t i on  3.3 Vp, q VL. (p[[q)(L) = (p(LU,4~) [[ q(LU .~Lp))(LN.A~N.~tq) 

This proposition is particularly important, because it allows to localize g|obal hiding informations. 
In fact, this localization is the essence of the construction of the 'interface processes' in [CLM89]. 

4 E q u i v a l e n c e  a n d  P a r t i a l  O r d e r  

In this section, we define a semantics of extended labelled transition systems in terms of observational 
equivalence (cf. [Mi80]) and establish a specification-implementation relation in terms of a preorder, 
which is compatible with this semantics. This preorder plays a key role in the correctness proof of our 
method. 

4.1 Guarded Undeflnedness 

The -* relation does not distinguish between observable and unobservable actions. In order to reflect 
that ~" is internal, and hence not visible, we define the weak transition relation =~ and the weak 
undefinedness predicate 1T for arbitrary p, q E S and a E .A as the least relation defined by: 

1. p ..~*_2_,_~* q implies p ~ q  

2. p --Y-,* q implies p ~ q 

3. qTa A p ==~ q implies p~fa. 

4. qT~ ^ p ~  q implies p~e. 

5. ql~e A p ~ q  implies p~a. 

6. p~¢ implies p~a. 

As usual, the effect of weakening is to swallow the invisible ~'-actions. 

4.2 Semantic Equivalence 

Our notion of semantics is defined by means of the following equivalence relation2: 

Defini t ion 4.1 ~a is the union of all relations R C S x S satisfying that pRq implies/or all a fi .4: 

I. tr~ a i /and only iy q~ a 

~. p ~ If implies 3q'. q ~ q' A y Rq' 

3. q ~ ~ implies 3t/. p ~ f A f Rq' 

Note that ~a coincides with the well-known observational equivalence ~ (el. [MiS0,Mi89]) if the first 
of the three defining requirements is dropped. 

1This form is called standard concurrent form ill CCS ([Mi80,Mi89]). 
2A similar definition has been given in [ClSteg0]. 
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4.3 The Specification-Implementation Relation 

The following preorder between processes is the basis of the framework in which we establish the 
correctness of our method: 

Def in i t ion  4.2 -4 is the union of all relations R satisfying that pRq implies for all a E ,4: 

1. p ~ 1t implies 3q ~. q ~ qn A f Rq' 

L "~pl~a implies (-,q~a and q ~ ~ implies 311. p ~ 11A11Rq') 

is a variant of the divergence preorder ~ (cf. [Wa88]) in which a-divergence does not require 
the potential of an a-move. Our modification serves for a different intend. We do not want to 
cover divergence, i.e. the potential of an infinite internal computation, but (guarded) undefinedness. 
This establishes -4 as a specification-implementation relation: a partial specificationp is met by an 
implementation q iff p ~ q, i.e. in contrast to [ClSte90,Wa88] we do not require an implementation to 
be able to pass these guards. This modification enhences the practicality of preorders as specification- 
implementation relations. In fact, similar definitions of preorders already appeared in [Ste89,Sti87], 
but have not been investigated as specification-implementation relations. 

Observational equivalence ~., divergence preorder ~, and our preorder -4 induce slightly different 
semantics on processes. However, it turns out that ~d is a refinement of all of them: 

P ropos i t i on  4.3 l f p ~ d q  thenp~oq and p ~ q  and p-4q. 

Furthermore, on totally defined processes ~e and _~ and m all coincide. Finally we have the following 
monotonicity properties: 

P ropos i t i on  4.4 For all processes p, pl and q, and all sets of actions L, we have:. 

1. p -4 11 implies Pllq -4 11Hq 

;2. p ~ d f  implies pllq~attllq 

3. p-411 implies p(L)-~_f(L t 

,~. p~a11 implies p ( L ) ~ d f ( L )  

5 T h e  R e d u c t i o n  M e t h o d  

5.1 Interface Specifications 
In this section we introduce our notion of interface specification together with a notion of correctness, 
which guarantees the success of our method. These notions concentrate on the set of sequences that 
may pass the interface. Thus the ezact specification of the interface between p and q is the language 
of (p]lq)(~4~f3 .A~), i.e. its set of observable sequences. Denoting the language of a process p by £(p) 
we have: 

Proposition 5.1 Vp, q. £((pl[q)(.ApN.4q)) = £(p(.4~))N £(q(.d~)) 

We are going to use interface specifications in order to express context constraints. Thus interface 
specifications are correct or safe if the corresponding exact interface specification is more constraint. 
This motivates the following definition: 

Def in i t ion  5.2 Given two processes p and q we define: 

I. A totally defined process I is an interface specification for p iff JtlC .~ ,  and it is an interface 
specification for p and q if it is an interface specification for both p and q. 



192 

~. An interface specification I for p and q is called correct for p and q iff 
£((Pllq)(A,n A,)) c_ £(Z). 

The set of all interface specifications for p is denoted by I(p) ,  and the set of all correct interface 
specifications for p and q is denoted by I (p ,  q). 

Proposition 5.4 will show that these language-based definitions are adequate for our purpose. 

5.2  T h e  R e d u c t i o n  O p e r a t o r  
For a process p and an interface specification I E ~(p) the reduction Hi(P) of p wrt I is essentially 
the projection of pi[ I onto its first component; we define Hi(p) = ( ( S , - * ,  ,4U {r}, T),p), where: 

• S = {q E S .13i '  E S I .  qlli' E S~II} 
•A~=A 

• Vq, q' E S V a  ~ Au{r} .  q--%q' iff 3i, e E S I. qll i --~.llZ q'lli' 

• V q E S q T r  iff qTr in the transition system ofp  

• Vq E S Va E .4. qT a iff one of the following conditions holds: 

- qT a in the transition system of p 

- 3q' E Sp. q - - ~  q~ and -~3q' E S. q --~ q' 

The only difference between Hi(p) and the projection of pllz onto p axe the undefmedrtess predicates: 
HI(p) inherits all undefinedness predicates from p, and new ones are introduced where transitions 
of p have been "cut" away by I. The point of the reduction operator is that for correct interface 
specifications this second kind of undefinedness disappears again in the full context. Remember, if 
an a-transition of p has been replaced by T a, this predicate disappears again in IIi(P)llq exactly if q 
in the corresponding state preempts the execution of an a-transition. This means thatT a are used as 
'error' predicates, indicating in the full context where an interface specification is badly defined. 

It is possible to show that HI(P) can be constructed in time proportional to the product of the 
number of transitions of p and I. We have: 

P ropos i t i on  5.3 Vp VIE  2F(p). HI(P) -K p 

Now we establish the promised independency of the reduction operator of the specific representation 
of the language specifying the interface. 

P ropos i t i on  5.4 

I. Vp UI, I '  E I(p). £(I)  = C(I') implies Hi(p) = Hi,(p ) 
~. vpw, ~' E z(p). c(z) c_ c(z') implies nz(p) _-< nr(p ) 
3. VpVI eZ(p).  £(p) C_/:(I) implies Hi(p) = p  

The correctness of our method is based on the following theorem: 

T h e o r e m  5.5 Let p and q be processes and I an interface specification for p and q. Then I E I(p,  q) 
implies that pllq is isomorphic to IIz(p)l]q, i.e. there ezists a bijection ~: Sdl q --, SnZ(p)ll,, such 
that: 

1. W, /¢ '  E 5Pll, Va E .A~IIqU {~" }. P'"~plIqP" iff t(/C)--?-,ni(P)lle ,(/¢') 

e. v f  E a~,, Va E ~ll,u (r}. p'Ta iff ~(p')Tnz(,).l~ (a) 

This result illustrates the generality of the reduction operator. It can be used for the verification of 
all properties, which are preserved by isomorphism. In particular, we have the following corollary 
concerning the semantic equivalence we are focusing on here: 

Coro l la ry  5.6 Yq, pVI.  I E ~[(p,q) implies Pllq ~d iiI(p)ll q 
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5 . 3  T h e  M e t h o d  

In this section, we show how the reduction operator can be used for the compositional minimization of 
processes of the form 7 ~ = (Pl U"" [IP~)(L) • This form is of particular interest, because it is responsible 
for the state explosion problem and therefore characterizes the processes that are critical during analysis 
and verification s . Our method works by successive construction of minimal extended transition systems 
for components of 7L The point of this construction is that it exploits interface specifications expressing 
context constraints for the component under investigation. Thus, the effect of the method depends on 
the information, which has been be provided by the designer of the system. However, the correctness 
of the method does not depend on the correctness of these interface specifications. They a r e  only 
used to "guide" the proof; and more precise interface specifications may allow more reductions. Thus, 
wrong interface specifications will never lead to wrong proofs. They may only prevent a successful 
verification of a valid statement. 

The method expects 7 ) as to be annotated with interface specifications that describe the interface 
between the right hand process and the left hand process of the parallel operator they are attached to: 

7' = (PllII~ ~ I I I , " ' I I I . _ , P - ) ( L )  

where Ii is an interface specification for Pill "'" IlPl and Pi+lll ""  lip-. We proceed by successive 
construction of reductions Pi for the prefix processes of 7": 

(plllx, ~ l l x ,  "" IIx._, v .  )(5> 
Pl 

A 
£ 

where the Pi are defined as follows: 

• P~ = ~(n~(~(p~(~ u L)))) 

• Pi = .Iv'I(III,(Ad((PI-,IlPl)(AI,UL)))) for 2 < i < n -  1 

• P .  = .~((P.-aIIp.)(L)) 

and ~ is a function that minimizes extended transition systems up to ~d. 
The goal of this method is to avoid unnecessarily large intermediate transition systems during the 

construction of the minimal transition system representing the semantic equivalence class of 7 ) . Thus 
it is important to minimize all the intermediate constructions as it is done above. Our method does not 
depend on a particular semantic equivalence. Other equivalences can be dealt with just by changing 
the minimization function accordingly (cf. Theorem 5.5). Of course, in order to prove the correctness 
of the method, this also requires to adapt the preorder definition. 

Independently of the correctness of the interface specification, we obtain just by means of Propositions 
4.4 and 5.3: 

P ropos i t i on  5.7 Let 1 < i < n and Q denote the parallel composition of all processes with indez 
greater than i. Then we have: (PillQ)(L) _-< P,  

This is already enough to guarantee the correctness of our method, i.e. that the success of a 
subsequent validation of a (~a-consistent) property for 2=', proves this property for 7". The correctness 
of the interface specifications comes into play in order to guarantee the success of the method. The 
following theorem is an immediate consequence of Corollary 5.6: 

3Of course, the method can be applied in a structured way to each of the Pl. Thus it is possible to analyze complex 
structures by successive construction of increasingly large transition systems. 
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T h e o r e m  5.8 For I < j < n let Qj denote the parallel composition of all processes with indez greater 
than j .  Then we have for 1 < i < n: 

Vj < i. Xj e Z(PIlI---lips, Q¢) impact, (PdlQ,)(L) ~d 7~ 

The situation for totally defined overall systems is particularly simple, as can be inferred from: 

C o r o l l a r y  5.9 Whenever P~ is totally defined, we have: P~ ~d 7~. 

6 A n  Applicat ion 

Finally, we demonstrate our method by means of a setup that is intended to ensure round robin access 
of n processes Pi to a common resource R. The idea is to pass a "token" via the communication 
channels tki in round robin manner and to aUow access to R only for the process that currently 
possesses the token. This process then sends its request via psi to the resource R, which responds 
by transmitting the object requested. The corresponding transmission line is modelled by a buffer 
Bi. This is motivated by thinking of large objects whose transmission cannot be modelled just by an 
atomic "handshake" communication. 

Let us now assume that we want to prove that the access is modeUed as intended. For this 
purpose we can hide everything but the actions corresponding to the transmission of the token, and 
subsequently prove that  the resulting process is equivalent to the process Spec (n) that just iteratively 
executes the sequence tka,. . . ,  tk,, i.e. it is enough to show for 

System(n) =a~t (R  IIPIIIBI[I " "  IIP~IIB, ) ({ tk l , . . , tk , ) )  

that  System(n) ~a Spec(n). 
It is easy to see that the apparent complexity of System (n) is exponential in n, whereas its real 

complexity is linear. In fact, it  is also possible to obtain an algorithmic complexity that is linear in n. 
This can be achieved by processing the system according to the structure indicated below, where the 
Ii  denote the exact interface specifications: 

e211B2 IIx, "-. IIx._, P~IIB. )({ tkl . . . .  tkn}) 

The table below summarizes a numerical investigation of the efficiency of our method by means of 
the Aldebaran verification tool [Fer88]. It displays the size of the global state graph (its apparent 
complexity), the size of the  maximal transition system constructed during stepwise minimization when 
exploiting the exact interface specifications (the algorithmic complexity), and  finally the size of the 
minimized global state graph 

n appaxent 
states 

4 144 
5 361 
6 865 
7 2017 

(its real complexity). 

complexity 
trans. 

368 
1101 
3073 
8177 

algorithmic complexity 
states trans. 

20 29 
24 35 
28 41 
32 47 

real complexity 
states trans. 

4 ~I 
5 5 
6 6 
7 7 

It is worth mentioning that  the method which works by stepwise composition and minimization of 
components encounters transition systems that  are even larger than the global state graph: e.g. when 
using this method in order to construct the minimal state graph of the above system for n = 7, the 
largest intermediate state graph that must be constructed has 2916 states and 9801 transitions. 

This stresses the importance of interface specifications for automatic proof techniques. It is our opinion 
that a software designer should always provide these specifications as part of the implementation. We 



195 

believe that besides enabling automatic verification, this requirement also leads to a transparent and 
well structured programming 4. 

7 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have presented a method for the compositional minimization of finite state systems, which is 
intended to avoid the state explosion problem. This method can be used to support the verification of 
any property that is consistent with ~d. Even better, the choice of ~d only affects the minimization 
step. Thus our method can be adapted to other semantic equivalences simply by modifying the 
minimization operator .A~. 

In this paper, we proposed a left to right strategy for the minimization of a highly parallel process. 
Of course, the correctness of our method does not depend on this particular choice. 

The effect of our method depends on interface specifications, which we assume as to be given by 
the program designer. However, the correctness of the method does not depend on the correctness 
of these interface specifications. Wrong interface specifications will never lead to wrong proofs. They 
may only prevent a successful verification of a valid property. This is very important, because it allows 
the designer to simply "guess" interface specifications, while maintaining the reliability of a successful 
verification. 

Another way to obtain interface specifications is by exploiting the property we are going to verify. 
This is what Clarke et al. [CLM89] had in mind, However, their approach only exploits the alphabet 
of the property under consideration. A refined treatment of property constraints using our notion of 
interface specification is under investigation. 

Finally, it should be mentioned that our method can easily be implemented. In fact, an imple- 
mentation in the Edinburgh Concurrency Workbench [CPS89] and in the Aldebaran verification tool 
[Fer88] is planned. 
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