
Compositional Minimization of Finite State Systems*

Susanne Graf ~ Bernhard Steffen

A b s t r a c t

In this paper we describe a method for the obtention of the minimal transition system, rep.
resenting a communicating system given by a set of parallel processes, avoiding the complexity
of the non minimal transition system. We consider minimization with respect to observational
equivalence, but the method may be adapted to any other equivalence.

An interesting method to achieve this goal is to proceed by stepwise composition and mini-
mization of the components of the system. However, if no precautions are taken, the intermediate
state graphs generated by this method may contain a lot of transitions which are impossible in
the whole context. We give here a variant of this method which allows to avoid these impossible
transitions by taking into account at each composition step a guess of the interface behaviour of
the context. This "interface specification" must be provided by the user. The method is based
on a reduction operator for the composition of a subsystem with its interface specification, which
is similar to the parallel operator but introduces undefinednes8 predicates whereever the inter-
face "cuts off" a transition. The parallel operator is defined in a way that these undefinedness
predicates disappear again in the full context if and only if the corresponding transition is in fact
impossible in the whole system.

The e~ciency of the method depends in fact on the accuracy with which the designer is able
to approximate the possible sequences of the context, but its correctness does not. The proof of
the correctness of the method is based on a preorder relation similar to the one defined by Walker.

1 M o t i v a t i o n

Many tools for the automatic analysis or verification of finite state concurrent systems are based
on the construction of the global state graph of the system under consideration (cf. [CES83,FSS83,
CPS89,CPSb89]). Thus they often fail because of the state ezplosion problem: the state space of a
system potentially increases geometrically in the number of its parallel components. To overcome
this problem techniques have been developed in order to avoid the construction of the complete
state graph (cf. [BFH90,CLM89,C1Steg0,Fer88,JosgT,KuMcM89,Kr89,LaTh88,LaXig0,Pnu85,ShGrg0,
StGr89,Wa88,Win90,WoLo89]). In this paper we present a method for the compositional minimization
of finite state concurrent systems, which is practically motivated by the following observation:

For the verification of a system it is usually sufficient to consider an abstraction of its
global state graph, because numerous computations are irrelevant from the observers point
of view. Such abstractions often allow to reduce the state graph drastically by collaps-
ing semantically equivalent states to a single state, which does not affect the observable
behaviour. For example, the so obtained "minimization" of a complex communication
protocol may be a simple buffer.

*This work has been partially supported by ESPRIT Basic Research Action 'Spec'
~IMAG-LGI, BP 53X, F-38041 Grenoble
~Department of Computer Science, University of Aarhas, DK-8000 Aarhus C

187

Let us refer to the size of the original state space of a system S as its apparent complexity, and
to the size of the minimized state space as its real complexity. The intention of our method is to
compositionally construct the minimal system representation and therefore to avoid the apparent
complexity. Unfortunately, the straightforward idea to just successively combine and minimize the
components of the system is not satisfactory, because "local" minimization does not take context
constraints into account and therefore may even lead to subsystems with a higher real complexity than
the apparent complexity of the overall system. This is mainly due to the fact that parts need to be
considered that can never be reached in the global context. Partial or loose specifications allow to
"cut off" these unreachable parts (see section 4.3). As in [C1Steg0,Kr89,LaTh88,ShGrg0,wa88]) we
will exploit this feature to take advantage of context information. Furthermore, we will refer to the size
of the maximal transition system that is encountered by our method as the algorithmic complexity.

Our method is tailored for establishing 9 ~ ~b, i.e. whether 9 satisfies the property ~b, when 9 is a
system of the form (PlIII~ "'" IlI._~ P-) (L). Here we assume the processes Pi already as to be given as
transition systems, I i to be interface specifications, namely supersets of the set of sequences that can
be observed at the associated interfaces, It to represent parallel composition and (L) a hiding operator
that abstracts from the activities considered as internal by transforming them into the unobservable
action r (see Section 3.2).

The point of our method is the successive construction of partially defined transition systems P/
with the following properties:

1. Pi is less specified than Pill II Pi, i.e. is smaller in the sense of ~ (see Definition 4.2).

2. Pn is semantically equivalent to the full system (PIll "'" 11P,,) (L), whenever the interface speci-
fications are correct.

3. P/ has the least number of states and transitions in its semantic equivalence class.

Subsequently, the validation of P~ ~ ~b completes the proof. Of course, this requires that qb is
preserved by the semantic equivalence under consideration. In this paper, we are dealing with a
refinement of observational equivalence (see Definition 4.1)). However, the method easily adapts to
other equivalences as well (see Section 5.3).

Important factor in this approach are the interface specifications, which should be provided by the
program designer. However, the correctness of the method does not depend on the correctness of these
specifications. They are only used to "guide" the proof. Thus wrong interface specifications will never
lead to wrong proofs. They may only prevent a successful verification of a valid statement. It should
be noted that the total definedness (see Definition 3.1) of P , already implies Pn ~d 9 , which is enough
to guarantee successful verification of all (~d_ consistent) properties satisfied by 9 .

The power of our method is demonstrated by means of a setup that handles the mutually exclusive
access of processes to a common resource. In fact, in this example, the apparent complexity is expo-
nential, whereas the algorithmic and the real complexity are linear (see Section 6). This is illustrated
by means of numerical results that have been obtained using the Aldebaran verification tool [Fer88].
The method can easily and efficiently be implemented in systems like the Edinburgh Concurrency
Workbench [CPS89] or the Aldebaran verification tool [Fer88].

2 R e l a t e d work

A great effort has been made in order to avoid the construction of the complete state graph, and
therefore to avoid the state explosion problem. Roughly, the proposed methods can be split into
two categories, the compositional verification and the compositional minimization. Characteristic for
the former category is that the global system need not be considered at all during the verification
process, and for the latter that a minimal semantically equivalent representation of the global system
is constructed. This minimal representation can subsequently be used for all kinds of verification.

188

A pure approach to compositional verification has been proposed by Winskel in [Wing0], where
rules are given to decompose assertions of the form ~v ~ ~b depending on the syntax of the program
and the formula ~. Unfortunately, the decomposition rules for processes involving the parallel operator
are very restricted. Larsen and Xinxln [LaXig0] follow a similar line, however, their decomposition
rules a re based on an operational semantics of contexts rather than the syntax.

In order to deal with the problems that arise from parallel compositions Pnueli [Pnu85] proposed
a "conditional" inference system, where assertions of the form ~bT~b can be derived, meaning that
the program 7 ~ satisfies the property ~b under the condition that its environment satisfies ~b. This
inference system has been used by Shurek and Grumberg in [ShGr90], where a semi-automatic modular
verification method is presented, which, like ours, is based on "guesses" for context specifications.
However, in contrast to our method it requires a separate proof of the correctness of these guesses.

Josko [Jos87] also presented a method, where the assumptions on the environment of a component
are expressed by a formula, which must be proved in a separate step. The main disadvantage of his
method is that the algorithm is exponential in the size of the assumptions about the environment.

A method of the second category was proposed by Halbwachs et al. in [BFHg0]. It constructs directly
a transition system minimized with respect to bisimulation by successive refinement of a single state.
In this method, which has been tailored for Lustre [CHPP87], symbolic computation is needed in order
to keep the expressions small which, in general, may grow exponentially.

Another approach of this category was presented by Clarke et al. [CLM89]. They exploit the
knowledge about the alphabet of interest in order to abstract and minimize the systems components.
Using (L} operations together with an elementary rule for distributing them over the parallel operator
(see Proposition 3.3) our method covers this approach.

Krumm [Kr89] considers minimization on the fly and reduction with respect to an interface spec-
ification that must be provided by the system designer. Whereas the former is limited, because the
complete state graph need to be traversed, the lat ter requires a separate proof of the correctness of
the interface specification. This contrasts with our method, where such a proof is unnecessary.

Larsen and Thomsen [LaTh88], and Walker [Wa88] use partial specifications in order to take context
constraints into account. Our method is an elaboration of theirs. It uses a more appropriate preorder
allowing to define a strategy for (semi-)automatic proofs where the required user support is kept to a
minimum.

The methods proposed in [WoLo89,StGr89,KuMcM89] are tailored to verify properties of classes
of systems that are systematically built from large numbers of similar processes. These methods are
somewhat orthogonal to ours. This suggests to consider a combination of both types of methods.

3 Representation of Processes

In this section, we establish our framework in which processes (systems) are labelled transition systems
extended by an undefmedness predicate with parallel composition and hiding defined on them. The ex-
tension provides a notion of partial definedness, which naturally leads to a specification-implementation
relation between processes (see section 4.3).

3 . 1 E x t e n d e d T r a n s i t i o n S y s t e m s

An extended finite state transition system T is a quadruple (S, -4U {r}, -% T) where

1. S is a finite set of processes or states;

2 . . 4 is a finite alphabet of observable actions, mad ~- represents an internal or unobservnble action
not in ,4;

3. --* is a mapping associating with each a E -4U {r}, a transition relation --2-* C_ S x S;

189

4. T c_ S x 2 AU {'} is a predicate expressing guarded undefinedness. Given (p, L) E T we write pX a
for a E L.

Typically S is a set of program states, and the relationship p--~-,q indicates that p can evolve to q
under the observation of a. Finally, pX a expresses that an a-transition would allow p to enter an
undefined state. We say that p is a-undefined in this case. Thus, transition systems involving the
undefinedness predicate are only partially defined or specified. It is this notion of partial specification
together with its induced partial order which provides the framework for proving our method correct.

Processes are rooted transition systems, i.e. pairs consisting of a transition system and a designated
start state. Given a transition system T = (S, .40 {T},--% T), we identify (as usual) a state p E S
with the process ((Sp, .A~U {r},--,p, Tp),p), where

• Sp is the set of states that are reachable from p in T,

• ¢4~=J[and

• --*p and Tp are --* and T restricted to Sp, respectively.

In future, obvious indices will be dropped. The following property characterizes the subset of "stan-
dard" transition systems.

Def in i t ion 3.1 A process is totalIy defined if its undefinedness predicate T is empty.

3 . 2 C r i t i c a l P r o c e s s e s

We now introduce a binary parallel operator [[and unary hiding operators (L), where L is a set of
observable actions. Intuitively, p[[q is the parallel composition of p and q with synchronization of
the actions common to both of their alphabets and interleaving of the others, and p(L) is the process
in which only the actions in L are observable. The transition relations for the resulting processes are
defined by:

1. P - ~ P' a E L 2. P - ~ f a ~ L
p (i) - ~ f (L) p(L) ~ f (L)

q__2., q,
P -?'* P' (a ¢ .Aq) 4. pllq ~...~ pllq, (a ~ .A1,)

3. PHq - ~ tfHq

p__~ p' q_2_. q'
5. a # r

Pllq " ~ P~llq'

their undefinedness predicates by:

pTa 6. ~ a E L 7. pTa a ~_L
p<L)T r

8. pTa (p]]q)Ta (a¢ 'A~°rq- -Y- 'q ') 9 . -
qTa

(p[[q)T a
(a ~ J t ~ or p - - ~ p I)

10. pTa qTa
(pllq)Ta

190

and their alphabets by .AML) = .Ap \L and .A~I , = , ~ U . ~ . F i n n y Sp(L) = {P'(L)IP' 6 Sp} and
8~1 q is the set of pairs f i l e that are reachable in Pflq.

Thus PT a (qT a) implies (p[iq)T a, whenever q (p) does not preempt the execution of a, i.e. whenever
a ~ ~lq or q - % q~ (a ~ .4p or p - % / /) . Remember that ~ ~ .4~ for any p, thus - ~ is defined by
the clauses 2, 3 and 4, and T~ by clauses 7, 8 and 9. The exact meaning of this definition will become
clear in Section 5.2, where we introduce the reduction operator. We have:

P ropos i t i on 3.2 1t is associative and commutative.

Thus processes of the form (PlI["" Itpn)(L} are well-defined. Our method will concentrate on this
form 1.

P ropos i t i on 3.3 Vp, q VL. (p[[q)(L) = (p(LU,4~) [[q(LU .~Lp))(LN.A~N.~tq)

This proposition is particularly important, because it allows to localize g|obal hiding informations.
In fact, this localization is the essence of the construction of the 'interface processes' in [CLM89].

4 E q u i v a l e n c e a n d P a r t i a l O r d e r

In this section, we define a semantics of extended labelled transition systems in terms of observational
equivalence (cf. [Mi80]) and establish a specification-implementation relation in terms of a preorder,
which is compatible with this semantics. This preorder plays a key role in the correctness proof of our
method.

4.1 Guarded Undeflnedness

The -* relation does not distinguish between observable and unobservable actions. In order to reflect
that ~" is internal, and hence not visible, we define the weak transition relation =~ and the weak
undefinedness predicate 1T for arbitrary p, q E S and a E .A as the least relation defined by:

1. p ..~*_2_,_~* q implies p ~ q

2. p --Y-,* q implies p ~ q

3. qTa A p ==~ q implies p~fa.

4. qT~ ^ p ~ q implies p~e.

5. ql~e A p ~ q implies p~a.

6. p~¢ implies p~a.

As usual, the effect of weakening is to swallow the invisible ~'-actions.

4.2 Semantic Equivalence

Our notion of semantics is defined by means of the following equivalence relation2:

Defini t ion 4.1 ~a is the union of all relations R C S x S satisfying that pRq implies/or all a fi .4:

I. tr~ a i /and only iy q~ a

~. p ~ If implies 3q'. q ~ q' A y Rq'

3. q ~ ~ implies 3t/. p ~ f A f Rq'

Note that ~a coincides with the well-known observational equivalence ~ (el. [MiS0,Mi89]) if the first
of the three defining requirements is dropped.

1This form is called standard concurrent form ill CCS ([Mi80,Mi89]).
2A similar definition has been given in [ClSteg0].

191

4.3 The Specification-Implementation Relation

The following preorder between processes is the basis of the framework in which we establish the
correctness of our method:

Def in i t ion 4.2 -4 is the union of all relations R satisfying that pRq implies for all a E ,4:

1. p ~ 1t implies 3q ~. q ~ qn A f Rq'

L "~pl~a implies (-,q~a and q ~ ~ implies 311. p ~ 11A11Rq')

is a variant of the divergence preorder ~ (cf. [Wa88]) in which a-divergence does not require
the potential of an a-move. Our modification serves for a different intend. We do not want to
cover divergence, i.e. the potential of an infinite internal computation, but (guarded) undefinedness.
This establishes -4 as a specification-implementation relation: a partial specificationp is met by an
implementation q iff p ~ q, i.e. in contrast to [ClSte90,Wa88] we do not require an implementation to
be able to pass these guards. This modification enhences the practicality of preorders as specification-
implementation relations. In fact, similar definitions of preorders already appeared in [Ste89,Sti87],
but have not been investigated as specification-implementation relations.

Observational equivalence ~., divergence preorder ~, and our preorder -4 induce slightly different
semantics on processes. However, it turns out that ~d is a refinement of all of them:

P ropos i t i on 4.3 l f p ~ d q thenp~oq and p ~ q and p-4q.

Furthermore, on totally defined processes ~e and _~ and m all coincide. Finally we have the following
monotonicity properties:

P ropos i t i on 4.4 For all processes p, pl and q, and all sets of actions L, we have:.

1. p -4 11 implies Pllq -4 11Hq

;2. p ~ d f implies pllq~attllq

3. p-411 implies p(L)-~_f(L t

,~. p~a11 implies p (L) ~ d f (L)

5 T h e R e d u c t i o n M e t h o d

5.1 Interface Specifications
In this section we introduce our notion of interface specification together with a notion of correctness,
which guarantees the success of our method. These notions concentrate on the set of sequences that
may pass the interface. Thus the ezact specification of the interface between p and q is the language
of (p]lq)(~4~f3 .A~), i.e. its set of observable sequences. Denoting the language of a process p by £(p)
we have:

Proposition 5.1 Vp, q. £((pl[q)(.ApN.4q)) = £(p(.4~))N £(q(.d~))

We are going to use interface specifications in order to express context constraints. Thus interface
specifications are correct or safe if the corresponding exact interface specification is more constraint.
This motivates the following definition:

Def in i t ion 5.2 Given two processes p and q we define:

I. A totally defined process I is an interface specification for p iff JtlC .~ , and it is an interface
specification for p and q if it is an interface specification for both p and q.

192

~. An interface specification I for p and q is called correct for p and q iff
£((Pllq)(A,n A,)) c_ £(Z).

The set of all interface specifications for p is denoted by I(p) , and the set of all correct interface
specifications for p and q is denoted by I (p , q).

Proposition 5.4 will show that these language-based definitions are adequate for our purpose.

5.2 T h e R e d u c t i o n O p e r a t o r
For a process p and an interface specification I E ~(p) the reduction Hi(P) of p wrt I is essentially
the projection of pi[I onto its first component; we define Hi(p) = ((S , - * , ,4U {r}, T),p), where:

• S = {q E S .13i ' E S I . qlli' E S~II}
•A~=A

• Vq, q' E S V a ~ Au{r} . q--%q' iff 3i, e E S I. qll i --~.llZ q'lli'

• V q E S q T r iff qTr in the transition system ofp

• Vq E S Va E .4. qT a iff one of the following conditions holds:

- qT a in the transition system of p

- 3q' E Sp. q - - ~ q~ and -~3q' E S. q --~ q'

The only difference between Hi(p) and the projection of pllz onto p axe the undefmedrtess predicates:
HI(p) inherits all undefinedness predicates from p, and new ones are introduced where transitions
of p have been "cut" away by I. The point of the reduction operator is that for correct interface
specifications this second kind of undefinedness disappears again in the full context. Remember, if
an a-transition of p has been replaced by T a, this predicate disappears again in IIi(P)llq exactly if q
in the corresponding state preempts the execution of an a-transition. This means thatT a are used as
'error' predicates, indicating in the full context where an interface specification is badly defined.

It is possible to show that HI(P) can be constructed in time proportional to the product of the
number of transitions of p and I. We have:

P ropos i t i on 5.3 Vp VIE 2F(p). HI(P) -K p

Now we establish the promised independency of the reduction operator of the specific representation
of the language specifying the interface.

P ropos i t i on 5.4

I. Vp UI, I ' E I(p). £(I) = C(I') implies Hi(p) = Hi,(p)
~. vpw, ~' E z(p). c(z) c_ c(z') implies nz(p) _-< nr(p)
3. VpVI eZ(p). £(p) C_/:(I) implies Hi(p) = p

The correctness of our method is based on the following theorem:

T h e o r e m 5.5 Let p and q be processes and I an interface specification for p and q. Then I E I(p, q)
implies that pllq is isomorphic to IIz(p)l]q, i.e. there ezists a bijection ~: Sdl q --, SnZ(p)ll,, such
that:

1. W, /¢ ' E 5Pll, Va E .A~IIqU {~" }. P'"~plIqP" iff t(/C)--?-,ni(P)lle ,(/¢')

e. v f E a~,, Va E ~ll,u (r}. p'Ta iff ~(p')Tnz(,).l~ (a)

This result illustrates the generality of the reduction operator. It can be used for the verification of
all properties, which are preserved by isomorphism. In particular, we have the following corollary
concerning the semantic equivalence we are focusing on here:

Coro l la ry 5.6 Yq, pVI. I E ~[(p,q) implies Pllq ~d iiI(p)ll q

193

5 . 3 T h e M e t h o d

In this section, we show how the reduction operator can be used for the compositional minimization of
processes of the form 7 ~ = (Pl U"" [IP~)(L) • This form is of particular interest, because it is responsible
for the state explosion problem and therefore characterizes the processes that are critical during analysis
and verification s . Our method works by successive construction of minimal extended transition systems
for components of 7L The point of this construction is that it exploits interface specifications expressing
context constraints for the component under investigation. Thus, the effect of the method depends on
the information, which has been be provided by the designer of the system. However, the correctness
of the method does not depend on the correctness of these interface specifications. They a r e only
used to "guide" the proof; and more precise interface specifications may allow more reductions. Thus,
wrong interface specifications will never lead to wrong proofs. They may only prevent a successful
verification of a valid statement.

The method expects 7) as to be annotated with interface specifications that describe the interface
between the right hand process and the left hand process of the parallel operator they are attached to:

7' = (PllII~ ~ I I I , " ' I I I . _ , P -) (L)

where Ii is an interface specification for Pill "'" IlPl and Pi+lll "" lip-. We proceed by successive
construction of reductions Pi for the prefix processes of 7":

(plllx, ~ l l x , "" IIx._, v .)(5>
Pl

A
£

where the Pi are defined as follows:

• P~ = ~(n~(~(p~(~ u L))))

• Pi = .Iv'I(III,(Ad((PI-,IlPl)(AI,UL)))) for 2 < i < n - 1

• P . = .~((P.-aIIp.)(L))

and ~ is a function that minimizes extended transition systems up to ~d.
The goal of this method is to avoid unnecessarily large intermediate transition systems during the

construction of the minimal transition system representing the semantic equivalence class of 7) . Thus
it is important to minimize all the intermediate constructions as it is done above. Our method does not
depend on a particular semantic equivalence. Other equivalences can be dealt with just by changing
the minimization function accordingly (cf. Theorem 5.5). Of course, in order to prove the correctness
of the method, this also requires to adapt the preorder definition.

Independently of the correctness of the interface specification, we obtain just by means of Propositions
4.4 and 5.3:

P ropos i t i on 5.7 Let 1 < i < n and Q denote the parallel composition of all processes with indez
greater than i. Then we have: (PillQ)(L) _-< P,

This is already enough to guarantee the correctness of our method, i.e. that the success of a
subsequent validation of a (~a-consistent) property for 2=', proves this property for 7". The correctness
of the interface specifications comes into play in order to guarantee the success of the method. The
following theorem is an immediate consequence of Corollary 5.6:

3Of course, the method can be applied in a structured way to each of the Pl. Thus it is possible to analyze complex
structures by successive construction of increasingly large transition systems.

t94

T h e o r e m 5.8 For I < j < n let Qj denote the parallel composition of all processes with indez greater
than j . Then we have for 1 < i < n:

Vj < i. Xj e Z(PIlI---lips, Q¢) impact, (PdlQ,)(L) ~d 7~

The situation for totally defined overall systems is particularly simple, as can be inferred from:

C o r o l l a r y 5.9 Whenever P~ is totally defined, we have: P~ ~d 7~.

6 A n Applicat ion

Finally, we demonstrate our method by means of a setup that is intended to ensure round robin access
of n processes Pi to a common resource R. The idea is to pass a "token" via the communication
channels tki in round robin manner and to aUow access to R only for the process that currently
possesses the token. This process then sends its request via psi to the resource R, which responds
by transmitting the object requested. The corresponding transmission line is modelled by a buffer
Bi. This is motivated by thinking of large objects whose transmission cannot be modelled just by an
atomic "handshake" communication.

Let us now assume that we want to prove that the access is modeUed as intended. For this
purpose we can hide everything but the actions corresponding to the transmission of the token, and
subsequently prove that the resulting process is equivalent to the process Spec (n) that just iteratively
executes the sequence tka,. . . , tk,, i.e. it is enough to show for

System(n) =a~t (R IIPIIIBI[I " " IIP~IIB,) ({ tk l , . . , tk ,))

that System(n) ~a Spec(n).
It is easy to see that the apparent complexity of System (n) is exponential in n, whereas its real

complexity is linear. In fact, it is also possible to obtain an algorithmic complexity that is linear in n.
This can be achieved by processing the system according to the structure indicated below, where the
Ii denote the exact interface specifications:

e211B2 IIx, "-. IIx._, P~IIB.)({ tkl tkn})

The table below summarizes a numerical investigation of the efficiency of our method by means of
the Aldebaran verification tool [Fer88]. It displays the size of the global state graph (its apparent
complexity), the size of the maximal transition system constructed during stepwise minimization when
exploiting the exact interface specifications (the algorithmic complexity), and finally the size of the
minimized global state graph

n appaxent
states

4 144
5 361
6 865
7 2017

(its real complexity).

complexity
trans.

368
1101
3073
8177

algorithmic complexity
states trans.

20 29
24 35
28 41
32 47

real complexity
states trans.

4 ~I
5 5
6 6
7 7

It is worth mentioning that the method which works by stepwise composition and minimization of
components encounters transition systems that are even larger than the global state graph: e.g. when
using this method in order to construct the minimal state graph of the above system for n = 7, the
largest intermediate state graph that must be constructed has 2916 states and 9801 transitions.

This stresses the importance of interface specifications for automatic proof techniques. It is our opinion
that a software designer should always provide these specifications as part of the implementation. We

195

believe that besides enabling automatic verification, this requirement also leads to a transparent and
well structured programming 4.

7 C o n c l u s i o n s a n d F u t u r e W o r k

We have presented a method for the compositional minimization of finite state systems, which is
intended to avoid the state explosion problem. This method can be used to support the verification of
any property that is consistent with ~d. Even better, the choice of ~d only affects the minimization
step. Thus our method can be adapted to other semantic equivalences simply by modifying the
minimization operator .A~.

In this paper, we proposed a left to right strategy for the minimization of a highly parallel process.
Of course, the correctness of our method does not depend on this particular choice.

The effect of our method depends on interface specifications, which we assume as to be given by
the program designer. However, the correctness of the method does not depend on the correctness
of these interface specifications. Wrong interface specifications will never lead to wrong proofs. They
may only prevent a successful verification of a valid property. This is very important, because it allows
the designer to simply "guess" interface specifications, while maintaining the reliability of a successful
verification.

Another way to obtain interface specifications is by exploiting the property we are going to verify.
This is what Clarke et al. [CLM89] had in mind, However, their approach only exploits the alphabet
of the property under consideration. A refined treatment of property constraints using our notion of
interface specification is under investigation.

Finally, it should be mentioned that our method can easily be implemented. In fact, an imple-
mentation in the Edinburgh Concurrency Workbench [CPS89] and in the Aldebaran verification tool
[Fer88] is planned.

Acknowledgements
We would like to thank Rance Cleaveland and Ernst-Riidiger Older~g for helpful discussions.

References

[BFHg0] A. Bouajjani, J.-C. Fernandez, N. Halbwachs. Minimal Model Generation, this volume

[CES83] E.M. Clarke, E.A. Emerson, E. Sistla. Automatic Verification of Finite State Concurrent
Systems using Temporal Logic Specification: A Practical Approach, POPL 1983

[CLM89] E.M. Clarke, D.E. Long, K.L. McMillan. Compositional Model Checker, LICS, 1989

[CPS89] R. Cleaveland, J. G. Parrow and B. Steffen. The Concurrency Workbench, Proceeding of
the Workshop on Automatic Verification Methods for Finite State Systems, Grenoble, Prance,
1989, LNCS 407

[CPSb89] R. Cleaveland, J. G. Parrow and B. Steffen. A Semantics based Verification Tool for Fi-
nite State Systems, in the proceedings of the Ninth International Symposium on Protocol
Specification, Testing, and Verification; North Holland, 1989

[C1Steg0] R. Cleaveland, and B. Steffen. When is "Partial" Complete? A Logic-Based Proof Technique
using Partial Specifications, in Proceedings of LICS'90, 1990

4Thls reminds for the situation for while-programs, where automatic verification depends on loop invariants that also
need to be provided by the programmer.

196

[Fer88] Fernandez, J.-C. Alddbaran: Un Syst~me de Vdrification par Rdduction de Processus Commu-
nicants, Ph.D. Thesis, Universit~ de Grenoble, 1988

[FSS83] J.C. Fernandez, J.Ph. Schwartz, J.Sifakis. An Ezample of Specification and Verification in
Cesar, Proceedings of 'The Analysis of Concurrent Systems', 1983, LNCS 207

[CHPP87] Caspi P., Halbwachs N., Pilaud N., Plaice J. LUSTRE, a declarative language for tn'ogram-
ruing synchronous systems, Proceedings of 14th POPL, Munich, 1987

[Jos87] B. Josko. MCTL - An eztension of CTL for modular verification of concurrent systems, Work-
shop on Temporal Logic in Specification 1987, LNCS 398

[KuMcM89] R.P. Kurshan, K. McMillan. A Structural Induction Theorem for Processes, in ACM
Symposium on Principles of Distributes Computing, 1989

[Kr89] H.Krumm. Projections of the Reachability Graph and Environment Models, two approaches to
facilitate the functional analysis of Systems of cooperating finite state machines, Proceedings
of the Workshop on Automatic Verification of Finite State Systems, Grenoble 89, LNCS 407.

[LaTh88] Larsen, K.G., and B. Thomsen. Compositional Proofs by Partial Specification of Processes,
in Proceedings LICS'88, 1988

[La.Xig0] K.G. Larsen, L. Xinxin. ~ompasitionality through an Operational Semantics of Contests, in
Proceedings ICALP'90, LNCS, 1990

[MiS0] R. Milner. A Calculus for Communicating Systems, LNCS 92, 1980

[Mi89] R. Milner. Communication and Concurrency, Prentice Hall, 1989

[Oldg0] E.-R. Olderog. Nets, Terms and Formulas: Three Views of Concurrent Processes, Habilita.
tionsschrift, Universit~it Kiel, to appear in Tracts in Theoretical Computer Science, Cambridge
University Press

[Pnu85] A.Pnueli. In Transition from Global to Modular Temporal Reasoning about Programs, in Logics
and Models for Concurrent Systems, Nato ASI Series F, Vol. 13, Springer Verlag

[ShGr90] G. Shurek, O. Grumberg. The Modular Framework of Computer-aided Verification: Motiva-
tion, Solutions And Evaluation Criteria, this volume

[StGr89] Z. Stadler, O. Grumberg. Network Grammars, Communication Behaviours and Automatic
Verification, in Proceeding of the Workshop on Automatic Verification Methods for Finite
State Systems, Grenoble, France, 1989, LNCS 407

[Ste89] B. Steffen. Characteristic Formulae, in Proceedings ICALP 1989

[Sti87} C. Stirling. Modal Logics for Communicating Systems, TCS 49, pp. 311-347, 1987

[StiWa89] C. Stirling and D. J. Walker. Local Model Checking in the Modal Mu-Calculus, in Proceed-
ings CAAP 1989

[Wa88] D.J. Walker. Bisimulation and Divergence in CCS, in Proceedings LICS 1988

[Wing0] G. Wlnskel. Compositional Checking of Validity on Finite State Processes, Workshop on The-
ories of Communication, CONCUR, 1990

[WoLo89] P. Wolper, V. Lovlnfosse. Verifying Properties of Large sets of Processes with Network In-
variants, in Proceeding of the Workshop on Automatic Verification Methods for Finite State
Systems, Grenoble, France, 1989, LNCS 407

