
A Context Dependent Equivalence Relation
Between Kripke Structures

(Extended abstract)

Bernhard Josko
Computer Science Department, University of Oldenburg

2900 Oldenburg, Federal Republic of Germany

Abstract
In [BCG87] Browne, Clarke and Grumberg define a bisimulation relation on Kripke structure
and give a characterization of this equivalence relation in temporal logic. We will generalize
their results to reactive systems, which are modelled by Kripke structures together with some
constraints describing some requirements how the environment has to interact with the
module. Our results subsume the result of [BCM87] by using the constraint true. Furthermore
it answers the questions raised in that paper how the equivalence of Kripke structures with
fairness constraints can be characterized.

Keywords: temporal logic, Kripke structures, bisimulation, modular specification, reactive
systems, hierarchical design

1 Introduction

In a top down design step of a large system one component may be splitted in several

subcomponents. Not only the tasks of the subcomponents have to be specified but also the

interface between the subcomponents have to be defined. On the one hand the interface has

to declare the interconnections of the subcomponents i.e. the inputs and outputs of the

components, and on the other hand the protocols for the exchange of data have to be specified

too. E.g. if a subsystem consists of two components which are coupled asynchronously

together (Fig. 1), we can use a 4-cycle signalling protocol to send data from one component

to the other (cf. Fig. 2). Module M1 is responsible for the Req signal and it has to guarantee

that this signal is set and reset according to the given protocol, and M2 is responsible for the

signal Ack. Proceeding in the design process we may define a more concrete representation

of module ~ by splitting this component in several subcomponents together with interface

205

specifications or by defining an implementation. In such a design step we can use the fact that

the environment (i.e. module M1) acts according to the protocol and hence, it is only required

that the module M 2 behaves correctly provided the environment guarantees the given interface

constraint. Therefore a module specification is given by a pair (assm, spec) where assm

describes some constraints on the environment and spec is the specification of the module,

which has to be satisfied by the module provided the environment guarantees assm.

~ DataIn [DataIn

M1 ~ ~ ; q M2 ~eq
Ack

Fig. 1 Fig. 2: 4-cycle signalling protocol

In this paper we investigate system design in the framework of temporal logic. We will use

the branching time temporal logic CTL* [EH86] as specification language. In the context of

temporal logics an implementation of a system is modelled by a state/transition-graph, also

called a Kxipke structure. A temporal logic formula is then interpreted in the associated

computation tree, which is obtained by unravelling the transition graph. As we are considering

open systems (or reactive systems [Pn85]), a module will be modelled by a Kripke structure

K together with an interface constraint assm. The constraint assm restricts the possible paths

in the computation tree. Hence to check the validity of a specification spec only those paths

are considered which satisfy the given assumption assm. Considering the example in Fig. 1

together with Fig. 2 the environment constraints used by module M 2 can be defined in

temporal logic as follows:

l:3(Ack A "-,Req ---> [~Req unless -,Ack A --,Req])

[:l(Req ---> [stable~ataln) unless Ack])

I:](Req ~ [Req unless Ack A Req])

[:3(Ack A Req ---> O--Req)

Fig. 3 shows a state/transition graph for M2 (only the protocol is implemented).

206

~ -~Req

Req ~k~_.

true true

Req(\

Fig. 3: Kripke structure-K t

~ -,Req

true f Req

R e q ~ J

Fig. 4: Kripke structure Ks

During the design process a module implementation may be replaced by a new one. If a

replaced module has already been verified to be correct w.r.t, its specification and one has

derived properties of a composed module which contains that specific module, one is

interested in the question whether the derived properties remain valid. Hence one is interested

in an equivalence notion on Kripke structures, which guarantees that the replacement of a

submodule by an equivalent one does not violate the correctness of derived properties of a

composed (sub)system.

In Fig. 4 another implementation for module M 2 is given. In this implementation the request

signal is checked after reading the input data. If the request signal is low - this is an violation

of the protocol - the input data is ignored. In an environment which guarantees a correct

behaviour according to the protocol, this step will never occurs. Thus both implementations,

Kt and I~, are equivalent with respect to an environment satisfying the constraints.

Two structures will be called equivalent if they cannot be distinguished by any formula. In

[BCG87] a bisimulafion ([Mi83], [Pa81]) for closed systems, i.e. Kripke structures without

constraints on the environment, is given. Two states s and s' are called bisimulation equivalent

if they are labelled with the same atomic propositions and for every transition s --> s t in one

structure there is a corresponding transition in the other structure leading to a state s' 1 which

is equivalent to st. It is shown that this relation can be characterized by the fact that both

structures satisfy the same temporal logic formulae. In this paper we will show how the results

of [BCG87] can be generalized to open systems. We will relativize the correspondence of

207

equivalent steps by requiring that only for those transitions which are on a path satisfying the

environment constraints there are corresponding transitions in the other module. We will show

that this bisimulation with respect to an assumption assm characterizes the structures satisfying

the same set of CTL* formulae relatively to the given assumption assm. i.e. two structures K~

and I~ are bisimulation equivalent w.r.t, assm iff the modules (K~,assm) and (I~,assm) are not

distinguishable by any CTL* formula.

For action based transition systems like CCS Larsen has given a notion of bisimulation

relatively to some contexts [La86], [LM87], but there is no relation to temporal logic

specifications.

2 Basic definitions

A Kripke structure is given by K = (S, R, s °, L), where S is a finite set of states, s o ~ S is the

initial state and R is a transition relation R ~ S x S, such that for every state s there is some

state s' with (s, s') ~ R, and L is a labelling function which associates with every state sE S

a set of atomic propositions, which are valid in that state.

Dealing with reactive systems one should use labelled transitions, as a transition depends on

the input signals. A Kripke structure with inputs is given by K = (S, R, s °, IN, OUT, L) where

S is a set of states, s o is the initial state, IN and OUT are disjoint set of propositions, L is a

labelling of states with subsets of OUT, and R is a transition relation with R ~ S x BExpr0N)

x S, such that for every satisfiable boolean expression b and every state s there is some state

s' with (s, b, s') ~ R. IN is a set of propositions on the input signals (usually the input signals

themselves) and OUT are propositions on the internal and output signals. The transition labels

are constraints on the input signals, restricting a transition to the instances where the actual

input signals satisfy the given boolean expression. For every Kripke structure K with inputs

there is a corresponding Kripke structure K' (without inputs) [Br86]. Therefore we will use

the usual notion of Kripke structure in this paper. Fig. 5 resp. Fig. 6 shows the transformed

Kxipke structures of Fig. 3 resp. Fig. 4.

208

Req Req
Ack

Req

Fig. 5: Kripke structure K~ transformed Fig. 6: Kripke structure I~ transformed

Given a Kripke structure K = (S, R, s °, L), g = (s i I i~N) is apath in K if (s i, si.l) e R for all

i e N. We will refer to the i-th state si also by 7r(i). The suffix of a path starting at state ~r(i)

will be denoted by 7r t. The (infinite) computation tree of K is obtained by unravelling the

Kripke structure (considered as a graph) starting with the initial state s °.

PTL [Pn77] is the linear propositional temporal logic defined by

f ::= a I ~f I f l ^ f 2 I f ~ v f 2 I Xf I [f~Ufz] I IZ]f I Of,

where a denotes an atomic proposition. [fl unless fz] will be used as an abbreviation for U]f2

v If1 U fz]. The validity of a PTL formula f along a path ~r will be denoted by n ~ f. We

also call a path ~ f-good if ~ satisfies the formula f. A state s is called f-good iff there is

some path 7r starting at s with is f-good.

CTL and CTL* are branching time temporal logics which are defined by the following rules:

(1) sf ::= a I ",sf I sf I A s f 2 I s f l v s f 2 1 Vpf I 3pf

(2) pf ::= sf I --,pf I pf~Apf2 I p f ~ v p f 2 1 Xpf I [pfIUpfz]

(3) pf ::= Xsf I [sf 1 U sfz]

The rules in (1) describe the building of state formulae and the rules in (2) and (3) describe

the construction of path formulae. CTL is the set of all state formulae defined by (1) and (3)

and CTL* is the set of all state formulae defined by (1) and (2). Furthermore we will use the

path formula Of as an abbreviation for [true U f], and Elf as an abbreviation for "-~)'~f. The

209

semantics of CTL and CTL* for closed systems is as usual (cf. [EH86]).

A module is given by a pair CK, assm), where K is a Kripke structure and assm is a PTL

formula. The interpretation of a CTL* formula spec in a module (K,assm) can be described

as follows:

(1) Construct the computation tree with root s °.

(2) Mark all paths starting at s o which satisfy the constraint assm.

(3) Interpret the formula spec as in the usual interpretation of CTb* formulae but with the

restriction that all path quantifiers are restricted to the marked paths.

To give an inductive definition of the semantics we need a description of the behaviour of the

environment at a specific instance on a computation path. The expected behaviour of the

environment at instance i on a path Ir is determined by the given interface constraint assm and

the computation history along ~. E.g. if D(Req ~ [Req unless Req A Ack]) is a conjunctive

of the interface constraint and assume that the signal Req is set to high at instance j (i.e. the

proposition Req is valid at instance j) then [Req unless Req ^ Ack] is also a part of the

expected behaviour of the environment at the next time instance. Using the computation

history along a path ~x we can define a formula asstrh(rc,assm) which describes the expected

behaviour of the environment at instance i on the computation path 7r.

Given a PTL formula assm and a state s we can define a PTL formula next-assm(assm,s) with

the following property:

g ~ assm iff ~ ~ next-assm(assm,s) for any path ~x starting at s.

This defintion can be extended to all time instances along a path. Given a path rc and a

formula assm, we can determine for every iEN a formula assm i which is valid on ~i iff 7r

satisfies assm. We define

assmo(f,g) := f assm~+l(f,~x) := next-assm(assrr~(f, r0, n(k))

Now we earl give an inductive definition of the validity of a CTL* formula in a module

(K,assm) using the notion of next-assm(assm,s) and assmi(assm,n). Given a Kripke structure

K and a context assm, the validity of a formula f at a state s, denoted by (K, assm, s) ~ f,

is defined as follows:

(K, assm, s) ~ Vpf iff

(K, assm, s) ~ 3pf iff

for all assm-good paths ~ starting at s:

(K, assm, 7r) ~ pf

there is some assm-good path ~ starting at s with

210

(K, assm, x) ~ pf

(K, assm, x) ~ sf iff (K, assm, x(0)) ~ sf

(K, assm, x) ~ Xpf iff (K, assml(assm,x), x 1) ~ pf

(K, assm, x) ~ [Pfl U Pf2] iff there is some k with (K, assn~(assm,x), ~) ~ Pf2

and for all j, 0< j < k: (K, assn~(assm,x), x j) ~ Pfl

The other cases are straightforward. Furthermore, we say that a module (K, assm) satisfies a

specification f, denoted by (K, assm) ~ f, iff (K, assm, s °) ~ f.

3 Relativized Equivalence of Kripke Structure

Usually two Kripke structures K and K' arc equivalent if both satisfy the same set of

formulae. Dealing with modules embedded in an environment which has to guarantee a

bchaviour according to an interface specification assm, we use a relativized equivalence

relation, which demands only that both modules should have the same bchaviour in such an

environment, i.e. (K,assm) and (K',assm) cannot be distinguished by any formula.

Two Kripke structures K and K' are equivalent relatively to assm E PTL, denoted by

K ---,n K', iff for all CTL* formulae f: (K, assm) ~ f iff (K', assm) ~ f.

This (semantical) equivalence relation can be defined by a syntactical relation on the structures

(bisimulation) as we will show in the sequel. Furthermore we will characterize the equivalence

class of a given Kripke structure by a CTL formula. We will define the relativized

bisimulation by a chain of approximations considering paths up to depth i.

Given two Kripke structures K = (S,s°,R,L) and K" = (S',s '°,R'~ ') with the same set ATOM

of atomic propositions and given a PTL formula assm we define the rclativizcd equivalence

relations BISIMi(assm) ~ S x S' as follows:

(1) (s,s') E BISIM0(assm) iff L(s) = L'(s')

(2) (s,s') E BISIMl+l(assm) iff

(a) L(s) = L'(s') and

(b) for every next-assm(assm,s) good successor s I of s there is a successor s' 1 of

s' with (sl,s'l) ~ BISI~(next-assm(assm,s))

(c) for every next-assm(assm,s') good successor s'~ of s' there is a successor s~ of

s with (sl,s" 0 ~ BISIMi(next-assm(assm,s))

(3) (s,s') ~ BISIM(assm) iff (s,s') E BISIMt(assm) for all i~N.

211

(4) K BISIM(assm) K' iff (s°,s '°) E BISIM(assm).

Example

Consider the Kripke structures of Fig. 5 and Fig. 6. Without consideration of the environment

constraints the two structures are different, as K I can proceed from state s t to s'~ or s~, whereas

in Ka the next states of sl are So or -fro as the input signal Req is low in state s~. But as the

environment has to guarantee that the signal Req remains high unless the response Ack occurs

- this is expressed by the assumption assm = D(Req ~ [Req unless Req ^ Ack]) -, both

structures are equivalent, as under the constraint assm the state s t in K t and the state s~ in K a

are not reachable.

The bisimulation BISIM(assm) and the equivalence relation ------,~m coincide. To prove this fact

we f'n'st show that two Kripke structures are equivalent relatively to a given constraint assm

if they are bisimulation equivalent.

Theorem 1

If (s,s') e BISlM(assm) then for all f ¢ CTL*: ((K,assm, s) ~ f iff (K',assm,s') ~ f).

For the reverse direction we give a characterization of the bisimulation class of a Kripke

structure by a CTL formula. Basicly this formula describes the computation tree of the

structure. Two states which are bisimulation equivalent have corresponding computation trees

w.r.t, the given constraint on the environment. For a state s, let CT,(s) denote the computation

tree of depth n rooted at s. We can describe the computation tree CT,(s) w.r.t, an assumption

assm by a CTL formula. The formula Fcra(S,assm) is defined by:

Fcr.0(s,assm) = alA...an A ~blA...A-'b m,

where L(s) = {at a,} and ATOM \ L(s) = {b I bin}

Ferj,+l(s,assm) = Fer.o(s,assm) ^

A{ ~X Fer~,(s',next-assm(assm,s)) I s' is a next-assm(assm,s)-good successor of s } a

VX (V{ Ferj,(s',next-assm(assm,s)) I s' is a next-assm(assm,s)-good successor of s})

As there is a finite depth m such that CTm(S °) w.r.t, assm characterizes the (infinite)

computation tree we obtain:

212

Theorem 2

Given a Kripke structure K with initial state s o and an assumption assm, then there is a CTL

formula FBrs~(K,assm) that characterizes that structure up to BISIM(assm)-equivalence.

Combining the results of Theorem 1 and Theorem 2 we obtain the following characterizations.

Corollary 1

(1) Given two structures K and K' then it holds:

(K,K') E BISIM(assm) iff (V f E CI'L* : (K,assm) ~ f iff (K',assm) ~ f)

(2) Given two structures K .and K' then it holds:

(K,K') E BISIM(assm) iff (V f E CTL : (K,assm) ~ f iff (K',assm) ~ f)

(3) Given two structures K and K' then it holds:

If there is some CTL* formula f with (K,assm) ~ f but (K',assm) ~ -,f, then there

is already a CTL formula f ' which distinguishes both structures.

4 Conclusion

In this paper we have defined a relativized bisimulation between Kripke structures and we

have characterized this relation in temporal logic. Our equivalence relation is a generalization

of the relation given in [BCG87], the results of [BCG87] are subsumed by our results by using

the assumption true. Our bisimulation is a strong bisimulation, but we can also define a weak

bisimulation by weakening the condition of a corresponding step: for every step s~s l on an

assm-good path there should be a corresponding finite path in the other structure. To give a

temporal characterization of the weak bisimulation we have to omit the next operator. This

leads to a generalization of the corresponding result of [BCG87]. As fairness constraints may

be specified as an assumption, we can characterize the equivalence of Kripke structures with

fairness constraints, too. This solves a problem raised in [BCG87].

If a temporal specification of a system composed of several modules is derived from the

specifications of the modules, and the modules are proved correct w.r.t, their specifications,

one can replace every module by an equivalent one without loosing the correctness of the

derived specification. This can be done as two equivalent modules can not be distinguished

by any temporal formula.

213

Furthermore the equivalence relation is decidable, as the formula FB~s~CK,assm) is

constructable and the validity of a formula spec in a module (K',assm) is decidable.

If the given constraints on the environment are safety properties, the definition of an assm-

good state can be weakened to the requirement that the state has to satisfies only the

disjunction of all sets literal(C), where C is a closure of assm. Hence this condition can be

checked locally.

In the context of the computer architecture design language AADL we use a temporal logic

MCTL for module specification [DD89], [DDGJ89], [Jo89]. MCTL consists of pairs (assm,

spec) where assm is a restricted PTL formula and spec is a CTL formula. By this paper we

have an appropriate notion of .equivalence for that logic, which can be used in the design

process within AADL.

5 References

[BCG87]

[Br86]

[DD89]

[DDGJ90]

[EH86]

[Jo90]

[Kr87]
[La86]

[LM87]

[LP85]

[Mi83]
[Pa81]

[Pn77]

[Pn85]

M.C. Browne, E.M. Clarke, O. Gmmberg: Charactering Kripke Structures in Temporal
Logic. Tech. Report CMU-CS-87-104, Carnegie Mellon University, Pittsburgh (1987)
M. Browne: An improved algorithm for the automatic verification of finite state
systems using temporal logic. Symp. Logics in Computer Science, pp. 260 - 266, 1986
W. Damm, G. Dthmen: AADL: A net based specification method for computer
architecture design, in: de Bakker fed.): Languages for Parallel Architectures: Design,
Semantics, and Implementation Models. Wiley & Sons, 1989
W. Damm, G. Dthmen, V. Gersmer, B. Josko: Modular verification of Petri nets: The
temporal logic approach. REX Workshop on Stepwise Refinement of Distributed
Systems: Models, Formalisms, Correctness, LNCS 430, pp. 180 - 207, 1990
E.A. Emerson, J.Y. Halpem: "Sometimes" and "not never" revisited: On branching
versus linear time temporal logic. Journal of the ACM 33, pp. 151-178, 1986
B. Josko: Verifying the correctness of AADL modules using model checking. REX
Workshop on Stepwise Refinement of Distributed Systems: Models, Formalisms,
Correctness, LNCS 430, pp. 386 - 400, 1990
F. Krtger: Temporal Logic of Programs. EATCS-Monographs, Springer, 1987
K.G. Larsen: Context-dependent bisimulation between processes. Ph.D. Thesis,
Edingburgh, 1986
K.G. Larsen, R. Milner: Verifying a protocol using relativized bisimulation. ICALP
87, LNCS 267, pp. 126-135, 1987
O. Liehtenstein, A. Pnueli: Checking that finite state concurrent programs satisfy their
linear specification. 12th ACM Syrup. on Principles of Programming Languages, pp.
97-107, 1985
R. Milner: Calculi for synchrony and asynchrony. TCS 25, 1983
D. Park: Concurrency and automata on infinite sequences. LNCS 104, pp167-183,
1981
A. Pnueli: The temporal logic of programs. 18th Annual Symposium on Foundations
of Computer Science, 1977
A. Pnueli: Linear and branching structures in the semantics and logics of reactive
systems. ICALP 85, LNCS 194, 1985

