
Branching Time Regular Temporal Logic
for Model Checking with Linear Time Complexity

K i y o h a r u H a m a g u c h i , H i r o m i Hi ra i sh i a n d Shuzo Y a j i m a

D e p a r t m e n t o f I n f o r m a t i o n Science , F a c u l t y o f E n g i n e e r i n g

K y o t o Univers i ty , K y o t o , 606, J a p a n .

Abs t r ac t Firstly in this paper, we propose a branching time logic BRTL (Branching time
Regular Temporal Logic) which has automata connectives as temporal operators. BRTL
is more expressive than CTL proposed by Clarke et.al, and it is modest in terms of model
checking, i.e. it has a model checking algorithm which runs in time proportional both to
the size of a given Kripke structure and to the length of a given formula, as shown in the
paper.

Secondly, in order to improve the succinctness of the temporal logic formulas, we in-
troduce the mechanism of substitutions to Boolean variables and references to the Boolean
variables. We propose EBRTL(Extended BRTL), i.e. BRTL with the substitution mech-
anism, and show examples of descriptions of some temporal properties. We develop its
model checking algorithm whose time complexity is linear both in the size of a given
Kripke structure and in the length of a given formula and exponential in the number of
the Boolean wriables used in the formula.

1 I n t r o d u c t i o n

In order to verify correctness of finite state systems, researchers developed various kinds
of propositional temporal logics, applied model checking methods on Kripke structures
and succeeded in verifying finite state systems of medium size[l, 2, 3].

CTL proposed in [1] has a model checking algorithm which runs in time O(Size(S)x
Len(f)) (Size(S) and Len(f) are the size of the given gripke structure and the length
of the given CTL formula respectively.) The expressive power of CTL is, however, re-
stricted, because only//(until) and X(next) with path quantifiers are allowed. ECTL[4]
is an extension of CTL, which have automata connectives[5] as temporal operators and
can express an arbitrary w regular set. The model checking algorithm shown in [4] is ex-
ponential in the size of the number of the states of automata connectives, because Muller
automata are used as their bases.

One of the two concerns of this paper is to develop a temporal logic system which is
more tractable, in terms of model checking, than ECTL and more expressive than CTL.
We propose a branching time logic BRTL (Branching Time Regular Temporal Logic) and
show a model checking algorithm which runs in time O(Size(S)x Len(f)), i.e. linear in
the number of the states of automata connectives used in f.

254

The automata connectives of BRTL are based on restricted deterministic w finite
automata of Biichi type. Although this means that BRTL cannot express all w regular
sets, it can express the properties of repetition of some events as shown by examples.

The other concern is to improve the succinctness of the temporal logic formulas by
introducing the mechanism of substitutions to Boolean variables and re]erences to the
Boolean variables. We propose EBRTL(Extended BRTL), i.e. BRTL with the above
mechanism, and show examples of descriptions of some temporal properties. We develop
its model checking algorithm whose time complexity is O(Size (S)xLen(f) x 21Vl) (]V[is
the number of the different Boolean variables used in f) .

In Section 2, BRTL is defined and its model checking algorithm is shown. In Section 3,
BRTL is extended by introducing the mechanism stated above.

2 Branching Time Regular Temporal Logic
The truth values of propositional logic are represented by T(true) and F(false). X ~ and
X ! represent sets of infinite and finite sequences of elements of a set X respectively.
IXI is the number of the elements of X. VT and V~ are tautology and invalid formulas
respectively.

2.1 S y n t a x and Semantics

Def. 2.1 A logic-type deterministic w finite automaton (ldo-fa) A = (Q, ~, P, Br, 6, qo, F)
is defined as follows.

Q and ~.. = {T, F} n are sets of finite number of states and input symbols respectively.
P = { P l , ' " ,Pn} is a set of atomic propositions. F is a set of accepting states and the
elements of Q - F are called rejecting states, q0 is the initial state.

Let B F be a set of all propositional formulas constructed from the elements of P.
B r : Q x Q --* B F is a partial function which satisfies the following two conditions.

We define BFq de_f {f l3q, .Br(q, q,) = f } , for each q e Q.
For any q E Q, (1) f l A f2 = V~ for any fl, f2 E BFq and (2) V1e~r~ f - Vr •

We define Edges(A) d el {(q, q')13f.Br(q, q') = f } .
6 : Q x]E --~ Q is a state transition function such that, for q, q' G Q and v E ~,

6(q, v) = q' ~ f = Br(q, q') is defined and f (v) = T.
For z E ~ , we define I n f (z) as the set of the states through which A goes infinitely

often. Then the set of words accepted by A is {xllnf(x) n F is not empty } and is
describedby IA[. []

Although complementation of an w finite automaton is not easy in general, even if it
is deterministic, an automaton that satisfies the following Con& 1 can be complemented
easily, (i.e. by exchanging the accepting states and the rejecting states.)
Cond . 1 Let A be a ldo-fa (Q, ~, P, Br, 6, qo, F). There is no input sequence which
transits A from a rejecting state q, E (Q - F) to the state q, via some accepting state
q, E F. []

A logic-type deterministic w finite automaton A which satisfies Cond. 1 is called Ido-
fa-1.

255

It is easy to prove the following two lemmas.

L e m . 2.2 For an ldo-fa-1 A = (Q, ~, P, Br, 6, qo, F), an ldo-fa-1 -A which accepts ~]~-IA1
is obtained by exchanging accepting states and rejecting states of A.

Lena. 2.3 For ldo-ya-I's = (Q , , ~., P, Brl, 6i, qlo, Fi) (i = 1, 2), an ldo-fa-1 ARIA2 which
a cepts IAxl u IA21 is obtained as follows:

• O = q l x 02 = {(qt, q2)lq~ ~ q t , q~ e q~}

• B r : Q x Q --+ BF is defined by Br((qt,q2),(q[,q~)) = Brt(qt ,q[)ABrx(q2, q~),
where q~,q~ E Q~ (i = 1,2) and both of Brt(f l ,q[) and Brt(q2, q~) are defined.

• qo = (qto, q2o).

• F = {(ql,q2)lqt EFt or q2 E F2} .
El

The lemmas mean that the languages defined by ldo-fa~l's are closed under Boolean
operations over sets.

Let A P be a set of atomic propositions. S = (~,,, I , R, ~0) is called a Kripke structure,
where ~ is a set of states, I : ~.. --~ 2 AP is an assignment function, R C ~ × ~ is a total
relation, S0 C ~,, is a set of initial states. The size of a given Kripke structure, denoted
by Size(S), is defined as I~l + IRI .

Def. 2.4 Syntax and Semantics
The syntax of BRTL(Branching Time Regular Temporal Logic) is as follows:

BRTL formulas: The set of all BRTL formulas are described by BF.
• p E A P is an BRTL formula.

• If f and g are BRTL formulas, then -~f and f V g are BRTL formulas.

• If A is an automaton connective, then 3A is a BRTL formula
Automata connectives

If A' is an ldo-f~-l, then A'[AP/B] and -~A'[AP/B] are automata connectives, where
A'[AP/B] is obtained by replacing each atomic proposition p~ E A P (1 < i < n) with
f~ E B C BF corresponding to p~ simultaneously. The numbers of the elements in A P
and B have to be equal.

The semantics of BRTL is defined on a Kripke structure S = (~, I , R, E0). S, s ~ f
means that the B I l L formula f holds at the state s on S. In the following, p E AP, j:
and g are B I l L formulas and A is an automaton connective.

• S , s ~ p i f f I (s) g p

• S,s#fVgi f fS, s~ fo rS , s#g
• S,s # ",f i f fS, s ~= f

• S,s # 9A iff there exists an infinite sequence a = SoStS#... starting from s on S
and a run (a sequence of states) qoqzq2"'" in Q such that, S, s~ ~ BR(q~, q~+t) holds
and all the states which appear infinitely in the run are in F .

• S , s ~ 3 - ~ A i f f S , s ~ 3 - A

If Vs E ~.0.S, s ~ f , then we describe S ~ f . El

256

The Boolean operators A, = and =~ are also used. Besides we define YA aZ-r --3-,A
and V-~A a___,r --3A.

For BRTL formulas f = 3A or 3-~A, where A = A'[AP/B] for some ldo-fa-1 A' and
BRTL formulas B, the length of f , denoted as Len(f) is defined as follows:

Len(A) a.__.f Iq l + IFAges(A')[+ Ej~B,,(~×~> Len(f) + EgCs Len(g)
Br~(Q x Q) represents the set of propositional formulas labeled to transitions of A ~.

Intuitively the length means the length of the description of the ldo-fa-1 A ~ and the set
of B.

2.2 C o m p a r i s o n w i th C T L

Def . 2.5 The-truth value of a given CTL formula is defined on each state on a given
Kripke structure.

While BRTL uses path quantifiers 3 and automata connectives, VXf , 3X f, V[flUf2]
and 3[flU f2] are allowed to be used[l].

The semantics of these formulas are as follows:

• S, s ~ V X f (3X f) iff S, s~ ~ f for all (some) s~ such that (s, sl) E R

• S, s ~ ¥[fd-/f=] (3[ft//f=]) iff S, s; ~ h (i = O, 1, 2 , . . . , n) and S, s,+l ~ h for all
(some) infinite sequences s = SoSlS2... starting from s and an integer n > O.

[]

Since the automata connectives are not easy to write, we introduce informally a de-
scription language like programming languages. For example, the automata connectives
of Fig. 1 and Fig. 2 are described by the descriptions (1) and (2) in the following.

• state: [a] and [1.] represent an accepting state and a rejecting state of an automaton
connective respectively. [ac] and [re] are special states. [ac] ([r e]) represents
an accepting (rejecting) state from which the automaton never transits to the other
states for any input.

• branch: i f $1 else i f $2 . . . else S , end.lf represents a branch from a state. Si has
a higher precedence than S~+1.

• loop: l oop S e n d l o o p represents a loop from a state to the loop.

• label and goto: %:' is a label to be put on a state and go to L means the transition
to the state.

If no transition is possible from a state, it is assumed to transit to a rejecting state.
I'x] Ix] is interpreted as Ix] Vr I'x] (x = a, r, ae or re). The first state is assumed to be
the initial state of the automaton.

With the above notations, we can define the temporal operators used in CTL.
Let Next(f) and Until(f1, f2) be automata connectives such that

Nezt(f) d'd ([r][r]f[a¢]) (1)

Until(f, g) deal (I t] i f l oop fl A " f2 e n d l o o p
else i f - , f A -~f2 [re] else i f f2 [ae] e n d i f) (2)

Then,

257

½

Figure 1: Next(f)

v[f, uf2] %f vuntil(f,, f2) 3[f, uf.] 3u.til(f,, f,)
v x f wvext(f) 3x f 3Next(f)

Temporal properties containing the concept of repetition can also be expressed. For
example, an BRTL formula f = VAIn where AR is shown in Fig. 3, means "for a given
m > 2, p is true on every state sl (i = kin, k = 0, 1,--.)".

It can be shown that this property cannot be expressed by any CTL formula by
extending the proof by Wolper in [5] to Kripke structures.

For a Kripke structure S = (T, I, R, T0) and a state So E T,

Rei(S, so) ~ {sil(sj, sj+~) e R , j = 0 , 1 , 2 , - - . i - 1}

Lena. 2.6 Let p be an atomic proposition. Ci is defined as a set of pairs of a Kripke
structure S = (T, I, R, To) and a state s, i.e. (S, s), satisfying the following conditions.

i. Vs' neAs).S,s' p (j=o,1,... ,i),
~. Vs" e Rei+l(s).S, s ° ~ -~p,

s. Vs"eRe (s).S,s" p (j= i+ l , i+2 , - - .) }
1] CTL formula f has at most n 'X's , then, for any (S;,s,) e Ci, (Si,,sl,) e Ci,

O,i' >n),
Si, sl ~ f ¢~ Se, si' ~ f (*)
In other words, for any i > n, the truth value of f is same for (Si, sl) E Ci. O

Theo. 2.7 Given an integer m > 2, D d~j {(S, s)lYs' E Rek,,. S, s' ~ p, (k = 0, 1,-..)},
where S is a Kripke structure and s is a state on S.

There exists no CTL formula f which satisfies (S, s) E D ¢~ S, s ~ f

(Proof) Let us assume that a CTL formula f satisfies the above condition and f has l
{X~s.

Let k m - 1 > I. From Lemma 2.6, S, s ~ f ¢~ S', s' ~ f holds, for any (S, s) E Ck,~
and any (S', s') E Ck,,,-1. Besides (S, s) E D and (S', s') ~ D. Thus there exists no CTL
formula that can express the property. I::]

ECTL[4] has as automata connectives deterministic w finite automata of Muller type,
the class of which is equivalent to w regular sets, as automata connectives. This means
that there are some properties which cannot be expressed in BRTL, but can be expressed
in ECTL.

From the above arguments, the relation among CTL, BRTL and ECTL in terms of
expressive power is as follows:

258

3el A- f~

-,f2

Figure 2: Until(f t , f2)

C T L < B R T L < E C T L

2.3 A M o d e l Checking Algor i thm

A mode] checking algorithm is shown in this section. The algorithm is constructed, based
on the next]emma.

Lem. 2.8 The necessary and sufficient condition]or S, s ~ 3A is that there exists a fi-
nite sequence (So, qo)(Sl, q t) " ' (sk, qk)(Sk+l, qk+l) " " (S,, q,,) satisfying the/ollowin# con-
ditions:

1. (sl, si+l) E R (i = 0, 1,-.- n - 1)

e. S, si ~ Br(qi, q,+t) (i = 0, 1, . .- n - 1)

3. sk = s,~ and qk = q,,

4. qj E F (j = k ,k + l , . . . n)
Algor i thm 2.9 • Input: A Kripke structure S and an BRTL formula f

• Output: S ~ f ?

• Method:
1. The automata connectives of the form -~A occurred in f are transformed to A by

exchanging the accepting states and rejecting states.

2. By the following (a)-(c), every subformula g of f is labeled to every state s E ~ if
and only if S, s ~ gl, in a bottom up manner.

The output is 'yes' if and only if f is labeled to every So E E0.

(a) When g is an atomic proposition, its truth value on each s E ~ is given.
(b) When g is hi v h2 or --,h for some BRTL formulas hi, h~ or h, the truth value

of g on each state can be obtained by the truth values of hl, h~ or h which are
already labeled.

(c) When g is 3A for some automata connective A, the following (i)-(iv) are per-
formed.

i. A graph G = (V, E) is constructed, where
V = {(s, q)ls E ~, q E O} and
E = {((s,q),(s ' ,q'))l(s,s ') e R and S,s ~ Br(q,q')}.

259

I I
m s ta tes

Figure 3: An automata connective representing repetition

ii. The set of vertices of all the strongly connected components on the sub-
graph G I of G whose vertices are in Y' = {(s, qF)]qv E F} is obtained. It
is described as Vv

iii. The set of the vertices in G which can reach some vertex in Vv is obtained.
It is described as Vg

iv. 3A is labeled to every s E ~ such that (s, q0) E VR (q0 is the initial state
of A).

[:I

Prop. 2.10 Algorithm g.9 runs in time O(Size(S)xLen(f)).
(Sketch of Proof) This is proved by the following facts:

• In 1, the transformation from --A contained in f to A can be performed in time
O(Len(f)).

• In 2.(b), if the truth values of hi, h2 or h are determined on each state s E E, then
the truth values of hi V h~ and -~h can be determined in time O(1~]).

• In 2.(c).i, the determination of S, s ~ Br(q, q') for all s E ~ and all q, q' E Q can
be performed in time O(Size(S) x (~.fEBr'(QxQ) Len(f) + ~geB Len(g))). Then the
construction of the graph G costs O(Size(S) x ([Q1 + IEdges(a)l)) in time, thus in
total, O(Size(S) x (Len(A))).

. In 2.(c).ii, iii and iv, the construction of strongly connected components and the
calculation of the vertices reachable to the components can be performed in linear
to the size of the graph. (Here the size is the sum of the numbers of edges and
vertices.)

O

3 Temporal Logic with Substitutions and References

3.1 Succinctness o f Descriptions

Some temporal properties expressed in the linear time temporal logic with El (always)
and O (next) as temporal operators cannot be described easily in CTL or BRTL. For
example, an assertion for a sequence detector such that the value of a signal line z is 1 iff
it recognizes the sequence 110 on a signal line z, is described in the linear time temporal
logic as follows.

260

^ ^ - 0 0

Using BRTL, this property is expressed as

VDVA,

where D f is equivalent to -,Unlil(VT,-,f) and A ~

[r] i f zt [r] {
i f zl [r] {

i f - , x l -- z [a¢]
else i f zt A -,z [a¢]
else [re]

}
else L: Jr] {

i f - , z [ac]
else [re]

}
else [r] Vr go to L

By allowing substitution to Boolean variables and references to them, the property
can be expressed succinctly as

VDV([r] VT, v~ := z [r] Vr, v2 := x [r] (vl ^ v2 ^ - ,z) ---- z [a¢])

Here vt and v2 are Boolean variables and v l : = z means that the value of z is substituted
to vl.
Def . 3.1 Syntax of EBRTL(Extended BRTL)

Let V = {vt, v2, . . - , vm} be a set of Boolean wriables. A P of BRTL contains V.
EBRTL formulas are defined similarly to BRTL formulas.

Automata connectives are similar to those of BRTL except that
• Formulas labeled to the transitions are composed of EBRTL formulas.

• Substitutions v~ := f (f is an EBRTL formula) can be labeled to the transitions.
For a transition, substituting to a variable v+ is allowed only once.

More precisely, the function Br is redefined as follows:
Br : Q x Q --, B F x SUB is a partial function which satisfies the following three

conditions, where SUB is a class of sets of substitutions.
We define BFq d+___~ {f]3q'.Br(q, q') = (f, sub), sub e SUB} for each q e Q.
For any q e Q, (1) f l A f2 -- V~. for anyfl , f2 e BFq, (2) VIe~+ f =- VT and (3) each

element sub E SUB has at most one substitution of the form v+ := f for each v+ E V.
(sub can be empty.) []

Before defining the semantics, we show a sequence along which 3([r] vl := z [r] v2 :=
z [r] (v~ ^ v~ A -,z) ---- z [ac]) holds in Fig. 4. The tuple labeled to each state stores
the values of vt and v2. We have to give initial values of the Boolean variables. In the
example, vl = F and v2 = F are the initial values.

261

z

T
(vl ^ v~ ^ - ~ z) - z is true.

Figure 4: Intuitive Semantics of an EBRTL formula

Note that the change of the values of the Boolean variables caused by substitutions
at a state occurs at its next state. This prevents oscillations of the values at each state.

Def. 3.2 Semantics
The semantics of EBRTL is defined for a Kripke structure S. When an EBRTL formula

f holds at a state s on S with initial values of Boolean variables represented by a vector
notation ~" = (vt, v~,-- -, v,~) (v~ = F or T), we denote as S, s, ¢ ~ f . v-~j] represents the
j-th component of the vector ~'.

While the truth value of each atomic propositions except Boolean variables axe deter-
mined for (S, s, ~ by I(s), that of the Boolean variable vj j = 1, 2 , . . . , m is the value of
the j-th component of v~.

Here we define the semantics for S, s, g ~ 3A (A is an automaton connective).
S, s, 77 ~ 3A iffthere exists an infinite sequence r = totlt2"" that satisfies the following

conditions.
Here t~ = (sl, v~, q,) E ~ x {T, F} m x Q.

• (s . s ~ + l) ~ R

• Let (f, sub) = Br(q~, q~+,). If (v~[j] := g) S sub, then v~l[j] = T iff S, st, ~ ~ g.
Otherwise Vi~l[j] = ~[j].

• Let (f, sub)= Br(q~,q~+1). S,s~,~ ~ f.
0

3.2 A Mode l Checking Algor i thm for E B R T L

The outline of a model checking algorithm of EBRTL is shown.
A lgor i thm 3.3

• Input: A Kripke structure S, an B I l L formula f and initial values of the Boolean
variables g

• Output: S, s, ~' ~ f for all the initial states of S ?

• Method: We modify the model checking algorithm shown in Algorithm 2.9 as fol-
lows:

- In constructing the graph G, tuples of the form (s, q, v-'), where s E ~, q E Q
and ~" is the vectors of the truth values for vj E V, are used instead of (s, q).

262

Prop. 3.4 The model checking algorithm]or EBRTL runs in time O(Size(S) x Len(f) x
21v!).
(Sketch of Proof) This is proved by the fact that the number of the tuples of the form
(s,q,g) is Size(S) ×Len(f) x 2 Ivl. []

4 C o n c l u s i o n

We proposed a temporal logic BRTL which is more expressive than CTL mad is more
tractable than ECTL in terms of model checking. Furthermore, we provided an extension
of BRTL which has the mechanism of substitutions to Boolean variables and references
to them.

The linear time complexity of the model checking algorithms of CTL or BRTL is
obtained by excluding nondeterminism from their descriptions. CTL* or ETL can express,
in a sense, the concept of nondeterminism by allowing formulas of the form V(] V g) (f
and g axe the formulas without the path quantifiers V and 3) and A V B (A mad B are
automata connectives based on nondeterministic finite automata) respectively.

The mechanism of substitutions and references to Boolean variables also introduces
nondeterminism to BRTL, in a sense. In the example of the sequence detector, the
branches of the automaton connective of BRTL formula are "folded" by using substitu-
tions. This means that the substitution mechanism is another way to introduce nonde-
terminism.

Future problems are as follows:
• Determination of the expressive power of EBRTL.

• Determination of the complexity of model checking problem for EBRTL.

References

[I] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite State
Concurrent Systems Using Temporal Logic Specifications: A Practical Approach. In
l Oth A CM Symposium on Principles o] Programming Languages, pages 117-126, Jan-
uary 1983.

[2] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic Verification
of Sequential Circuits Using Temporal Logic. 1EEE Transactions on Computers, C-
35(12):1035--1044, December 1986.

[3] H. Hiraishi. Design Verification of Sequential Machines Based on a Model Cheek-
ing Algorithm of e-free Regular Temporal Logic. In Computer Hardware Description
Languages and their applications, pages 249-263, June 1989.

[4] E. M. Clarke and O. Griimberg and R. P. Kurshan. A Synthesis of Two Approached
for Verifying Finite State Concurrent Systems. Technical report, Carnegie Mellon
University, 1987. manuscript.

[5] P. Wolper. Temporal Logic Can Be More Expressive. In Proceedings o] P~nd Annual
Symposium on Foundations o] Computer Science, pages 340-348, 1981.

