Abstract
We consider analogues of the arithmetical hierarchy over word relations, obtained by replacing the class of recursive relations with some other classes which are defined by various types of finite and pushdown automata or by concatenation formulas.
Most of the new hierarchies turn out to be downward prolongations of the arithmetical hierarchy: They reach the class of recursive relations at their second level. The lower levels of the different new hierarchies are shown to be incomparable w.r.t. set inclusion for the most part.
This work is partially supported by ESPRIT Basic Research Action 3166 ‘Algebraic and Syntactic Methods In Computer Science’ (ASMICS)
Preview
Unable to display preview. Download preview PDF.
References
A.V.Aho, J.D.Ullman: The Theory of Parsing, Translation and Compiling, Vol.1, Prentice-Hall, Englewood Cliffs, N.J. 1972
J.Berstel: Transductions and Context-free Languages, Teubner, Stuttgart 1979
J.R.Büchi, S.Senger: Coding in the Existential Theory of Concatenation, Arch. Math. Logik 26 (1986/87), pp. 101–106
J.R.Büchi, S.Senger: Definability in the Existential Theory of Concatenation and Undecidable Extensions of this Theory, Z. Math. Logik Grundlag. Math. 34 (1988), pp. 337–342
P.C.Fischer, A.L.Rosenberg: Multitape One-Way Nonwriting Automata, J. Comp. Syst. Sci. 2 (1968), pp. 88–101
P.G.Hinman: Recursion Theoretic Hierarchies, Springer, Berlin 1978
J.E.Hopcroft, J.D.Ullman: Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Reading, Mass. 1979
G.S.Makanin: The Problem of Solvability of Equations in a Free Semigroup, Math. USSR-Sb. 32, no. 2 (1977), pp. 129–198
W.V.Quine: Concatenation as a Basis for Arithmetic, J. Symbolic Logic 11 (1946), pp. 105–114
M.O.Rabin, D.Scott: Finite Automata and Their Decision Problems, IBM J. Res. Develop. 3 (1959), pp. 114–125 (reprinted in: Sequential Machines: Selected Papers, (E.Moore, Ed.), Addison-Wesley, Reading, Mass. 1965, pp. 63–91)
S. Seibert: Quantifier Hierarchies over Word Relations, Bericht 9204, Institut f. Informatik u. Prakt. Math., Univ. Kiel 1992
S.Senger: The Existential Theory of Concatenation, Ph. D. Dissertation, Purdue University 1982
R.M.Smullyan: Theory of Formal Systems, Princeton University Press 1961
W.Thomas: Automata and Quantifier Hierarchies, in: Formal Properties of Finite Automata and Applications (J.E.Pin, ed.), Lect. Notes in Comp. Sci. 386, Springer, Berlin 1989, pp. 104–119
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Seibert, S. (1992). Quantifier hierarchies over word relations. In: Börger, E., Jäger, G., Kleine Büning, H., Richter, M.M. (eds) Computer Science Logic. CSL 1991. Lecture Notes in Computer Science, vol 626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023779
Download citation
DOI: https://doi.org/10.1007/BFb0023779
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55789-0
Online ISBN: 978-3-540-47285-8
eBook Packages: Springer Book Archive