Preview
Unable to display preview. Download preview PDF.
References
D. R. Bean, Effective Coloration, J. of Symbolic Logic, 1976, 41, pp. 469–480.
R. J. Beigel, Unbounded Searching Algorithms, SIAM J. Computing, 1990, vol. 19, no. 3, pp. 522–537.
R. J. Beigel and W. I. Gasarch, On the Complexity of Finding the Chromatic Number of a Recursive Graph I: The Bounded Case, Annals of Pure and Applied Logic, 1989, 45, pp. 1–38.
R. J. Beigel and W. I. Gasarch, On the Complexity of Finding the Chromatic Number of a Recursive Graph II: The Unbounded Case, Annals of Pure and Applied Logic, 1989, 45, pp. 227–246.
R. J. Beigel and W. I. Gasarch and J. T. Gill and J. Owings, Terse, Superterse, and Verbose Sets, Technical Report no. 1806, U. of Maryland at College Park, Dept. of Computer Science, 1987, Accepted to appear in Information and Computation.
J. L. Bentley and A. C. C. Yao, An Almost Optimal Algorithm for Unbounded Searching, Information Processing Letters, August, 1976, 5, pp. 82–87.
R. G. Gallagher, Information Theory and Reliable Communication, 1968, John Wiley, Ney York.
David Harel, Hamiltonian Paths in Infinite Graphs, Proc. of the 23rd Annual Symposium on Theory of Computation, 1991, pp. 220–229.
D. E. Knuth, Supernatural Numbers, in The Mathematical Gardner, D. A. Klarner, editor, 1981, pp. 310–325, Wadsworth International, publisher, Belmont, CA.
Martin Kummer, A Proof of Beigel's Cardinality Conjecture, Universität Karlsruhe, Fakultät fĂ¼r Informatik, 1991, 5, Postfach 6980, D-7500 Kaisruhe 1, FRG. To appear in the Journal of Symbolic Logic.
A. Manaster and J. Rosenstein, Effective Matchmaking and k-chromatic graphs, Proc. of the American Mathematical Society, 1973, 39, pp. 371–378.
H. Rogers Jr., Theory of Recursive Functions and Effective Computability, 1967, McGraw-Hill, New York.
R. I. Soare, Recursively Enumerable Sets and Degrees, Omega Series, 1987, Springer, Berlin.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1992 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gasarch, W.I., GuimarĂ£es, K.S. (1992). On the number of components of a recursive graph. In: Simon, I. (eds) LATIN '92. LATIN 1992. Lecture Notes in Computer Science, vol 583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023828
Download citation
DOI: https://doi.org/10.1007/BFb0023828
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-55284-0
Online ISBN: 978-3-540-47012-0
eBook Packages: Springer Book Archive