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Abstract

Languages with polymorphic types (e.g. ML) have traditionally been imple-
mented using Lisp-like data representations—everything has to fit in one word,
if necessary by being heap-allocated and handled through a pointer. The reason
is that, in contrast with conventional statically-typed languages such as Pascal,
it is not possible to assign one unique type to each expression at compile-time,
an absolute requirement for using more efficient representations (e.g. unallocated
multi-word values). In this paper, we show how to take advantage of the static
polymorphic typing to mix correctly two styles of data representation in the imple-
mentation of a polymorphic language: specialized, efficient representations are used
when types are fully known at compile-time; uniform, Lisp-like representations are
used otherwise.

1 Introduction

Most programming languages include some kind of type system. Among the numerous
motivations for using a type system, I shall focus on two main goals: 1- to make programs
safer, and 2- to allow for better compilation.

The first concern is to ensure data integrity in programs. Many operations are mean-
ingless when they are performed on values of the wrong kind, such as, for instance, ap-
plying a boolean as if it was a function. In these cases, the results are either meaningless,
unpredictable values, or a hardware fault. One of the aims of a type system is to prevent
such run-time type errors. From this standpoint, typing can be either static (performed
at compile-time), or dynamic (performed at run-time, just before type-constrained oper-
ations). But in any case, typing must be strong: there should be no way to claim that a
value has a given type when in fact it does not.

Another aim of a type system is to support efficient compilation. Most hardware archi-
tectures are somehow typed, in the sense that some resources are dedicated to operate on
certain kinds of data. For instance, many processors have two sets of registers, one set to
hold integers and pointers, and the other to hold floating-point values. On integer regis-
ters, no instructions are provided to perform floating-point computations, and vice-versa.
In addition, floating-point registers are usually wider than integer registers, therefore a
floating-point number cannot fit in an integer register. When mapping a programming
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language on these architectures, it is important to know which values are floating-point
numbers and which ones are not, otherwise the correctness of the compilation would be
compromised. For instance, to compile an assignment a := b, it is crucial to know the
types of variables a and b, in order to determine their exact size, and copy the right num-
ber of bytes. Of course, this type information must be available at compile-time, hence
the emphasis is on static typing, here. From this standpoint, strong and weak typing are
equally acceptable, provided that typing violations are explicitly mentioned in the source
code.

Given a strong type system with static checking, both approaches can be combined
in a single language, as in Algol-68, Pascal or Modula-2 for instance. This gives the
best of both worlds: type safety in a well-compiled language. However, it seems difficult
to achieve the same results with more powerful type systems than the one of Pascal.
Using types to determine the size (and other relevant information) of a value works fine
when every value has exactly one type. This condition is too restrictive in practice: one
cannot write “generic” functions once for all and then apply them to data of several types,
provided that it makes sense. For instance, a sorting function should be able to operate
on many kinds of arrays (e.g. arrays of integers and arrays of strings), assuming a suitable
comparison function is provided.

Therefore, many advanced type systems lift the restriction that every value has a
unique, statically-known type, through the introduction of concepts such as type abstrac-
tion, subtyping, inheritance, and polymorphism. See Cardelli and Wegner’s [3] for a uni-
form presentation of these features. In the following, I concentrate on polymorphism, as in
ML [9]. Polymorphic type systems allow type expressions to contain universally quantified
type variables. For instance, a sorting function should, for all types T , take an array of ele-
ments of type T and return another array of elements of type T , given in addition an order-
ing predicate over T , that is a function taking a pair of elements of type T and returning a
boolean. Its polymorphic type is therefore ∀T. (T×T → Bool)→ Array(T )→ Array(T ).
As the quantification implies, the type variable T can be substituted by any actual type,
such as Int or String. In a sense, the type formula given above summarizes all the
possible types for the sorting function.

When a value can safely belong to several types, we cannot always determine statically
all its characteristics. In the previous example, the sorting function is likely to copy
elements of the array given as parameter, but the type of these elements can be any
instance of the type variable T , that is any type. Therefore, we do not know at compile-
time how many bytes to move to perform the copy. Consider two solutions to this problem.

One is to defer the compilation of polymorphic function until they are actually applied
to values of known types. Then, we can deduce the type which the polymorphic function
is used with, and therefore get all the information (e.g. sizes) we need to compile. Of
course, we will have to compile several specialized versions of a polymorphic functions, if
it is used with several different types. This technique is often used for Ada’s “generics”.
Its strength is that it allows the use of efficient representations, and the production of
good code (as efficient as if the function was monomorphic). However, it results in code
duplication and loss of separate compilation. In addition, it is hard to maintain the
illusion that polymorphic functions are still first-class objects. For instance, compilation
of polymorphic functions built on top of other polymorphic functions, or functions taking
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polymorphic objects as arguments must be deferred in turn. This may lead to an explosion
in the number of specializations of a polymorphic function we have to compile—this
number could even be infinite, as in the following example, written in ML syntax:

datatype ’a chain = Empty | Cell of ’a * ’a list chain;

fun length_of_chain Empty = 0

| length_of_chain (Cell(x,rest)) = 1 + length_of_chain rest;

The other approach to polymorphic compilation is to revert to uniform data repre-
sentations. That is, data representation for all types share a common format, allowing
“generic” operations such as parameter passing, function return, assignment, . . . to be
compiled without knowing the type of the values they manipulate. In particular, all rep-
resentations must have the same size, usually one machine word, and any data which does
not fit in one word has to be heap-allocated and represented by a pointer (assuming point-
ers do fit in one word). In addition, the calling conventions must be exactly the same for
all functions. With these representation constraints, type information is no longer needed
to generate correct code, and compiling polymorphic functions is no longer a problem.
This approach is used in most implementations of ML to date.

The main drawback of the second approach is that uniform representations are not
as efficient as the kind of specialized representations used in monomorphic languages.
First, all data which does not fit naturally in one word must be heap-allocated. This is
much more expensive than carrying around multi-word representations in several registers,
resulting in high heap consumption and frequent garbage collection. Second, communi-
cations across function calls are not very efficient: a function returning a floating-point
number, just computed in a floating-point register, has to copy it in the heap and return
a pointer to it, only to have the callee dereference that pointer, and reload the number in
a floating-point register before using it.

This use of uniform data representations is not the main reason why current ML
compilers do not produce as efficient code as, say, Modula compilers. However, as modern
compiling techniques are applied to the ML language, I think this representation problem
will show up as a serious bottleneck for efficient compilation of ML, and similarly for other
polymorphic languages.

In this paper, I set out to reconcile the safety offered by strong static typing, the con-
venience and conceptual cleanliness of having polymorphic functions compiled only once,
just like regular functions, and the efficiency of specialized data representations. Since
the first two requirements imply polymorphic functions must work on uniform represen-
tations anyway, the third requirement has to be relaxed slightly. In this paper, I attempt
to mix uniform and specialized representations in the implementation of a polymorphic
language. It is intended that monomorphic functions work only on specialized represen-
tations, the uniform representations being used only to communicate with polymorphic
functions. The main question is, then, How can one infer where to insert the necessary
conversions between representations?

The remainder of the paper is organized as follows: section 2 presents the problem
of data representation in the case of a monomorphic calculus. Uniform and specialized
representations are contrasted by giving two compilation schemes for a simple stack-based
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abstract machine. This is mostly implementor’s wisdom, but presented in a uniform set-
ting. Using the same approach, section 3 tackles the representation problem in the case
of a polymorphic calculus. The main novelty of this paper—combining polymorphism
and specialized representations—is informally presented here, then formalized using an
intermediate calculus, with a restricted notion of polymorphism. Section 4 aims at show-
ing that specialized representations can be profitably used in the ML language. To this
end, the main features of the type system of ML are recalled, and their compatibility
with specialized representations checked. Finally, we give a few concluding remarks in
section 5

2 The monomorphic case

In this section, we present the problem of data representation in the simple case where
every term has exactly one type, and this type is known at compile-time.

2.1 A simply-typed language

We consider a small language based on the simply-typed λ-calculus with constants. The
only data structures are pairs. The constants include integer and floating-point numbers,
of base types Int and Float, as well as primitive operations such as succ_int and
add_float.

The syntax of this calculus is as follows. We write i for an integer, f for a floating-point
number, c for a constant, x or y for a variable, a or b for terms, and A, B for types.

c ::= i | f | succ_int | add_float | . . .
a ::= c | x | λx : A. b | b(a) | (a, b) | a.fst | a.snd

A ::= Int | Float | A→ B | A×B

Typing rules are classical. They are written in structural operational semantics style
[11], as a set of axioms and inference rules defining the judgement “under assumptions E,
term a has type A”, written E ` a : A. The typing environment E consists in a sequence
of assumptions of the form x : A, meaning that variable x is assumed to have type A.
For each constant c, we write T (c) for its associated type; in particular, T (i) = Int,
T (f) = Float, T (add_float) = Float× Float→ Float, and so on.

E ` c : T (c) E1, x : A, E2 ` x : A

x : A, E ` b : B

E ` λx : A. b : A→ B

E ` b : A→ B E ` a : A

E ` b(a) : B

E ` a : A E ` b : B

E ` (a, b) : A×B

E ` a : A×B

E ` a.fst : A E ` a.snd : B
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UE(i) = Const(i)

UE(f) = Const(〈flow , fhigh〉)
UE(x) = Access(posx(E))

UE(λx : A. b) = Abstr(Ux:A,E(b), Return)

UE(b(a)) = UE(b),UE(a), Apply

UE(a, b) = UE(a),UE(b), Pair

UE(a.fst) = UE(a), First

UE(a.snd) = UE(a), Second

UE(add float(a, b)) = UE(a),UE(b), AddFloat

UE(add float) = Abstr( Access(0), First, Access(0), Second,
AddFloat, Return

)

Figure 1: Compilation scheme with uniform representations

2.2 Evaluation using uniform representations

We now give a compilation scheme for this small language. The target machine is a stack-
based machine with environments, where functional values are represented by closures.
Call-by-value is assumed, to be consistent with the strict semantics of ML. This machine
is very close to Landin’s SECD [7] and Cardelli’s FAM [1]. The compilation scheme is
given in figure 1. It is straightforward, except maybe for the treatment of variables. The
value of a variable is to be found at run-time in the environment (a tuple of values). To
access this variable, we need to know its position inside this tuple. That’s the raison d’être
of the compilation environment E, similar in structure to typing environments: it records
the name of all free variables, in the order they will appear in the run-time environment.
Then, the position of a variable x in an environment described by E is simply:

posx(∅) is undefined

posx(x : A, E) = 0

posx(y : A, E) = 1 + posx(E)

This simple compilation scheme does not make use of typing information. This fact has
deep consequences on the way data are represented in the machine, namely that all data
must fit in one word. Indeed, the functions λx :A. x, for all types A, have exactly the same
code, and are applied in exactly the same way. This means that the instructions to apply
a function to an argument, fetch a value from the environment, and returning a value,
must operate uniformly on data of any type. This implies that all data representations
have the same size, and in case of register machines with several register classes, that they
all use the same register class.

As a consequence, data which do not fit in one word are allocated in the heap, and
handled through a pointer. (We assume that any pointer fits in one word). We write
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Code Stack Environment
Before Const(v), C S γ
After C v, S γ
Before Access(n), C S γ = 〈v1, . . . , vn, . . .〉
After C vn, S γ
Before Abstr(C1), C S γ
After C 〈〈C1〉, γ〉, S γ
Before Apply, C v, 〈〈C1〉, 〈Γ1〉〉, S γ
After C1 〈C〉, γ, S 〈v, Γ1〉
Before Return, C v, 〈C0〉, γ0, S γ
After C0 v, S γ0

Before Pair, C v2, v1, S γ
After C 〈v1, v2〉, S γ
Before First, C 〈v1, v2〉, S γ
After C v1, S γ
Before Second, C 〈v1, v2〉, S γ
After C v2, S γ
Before AddFloat, C 〈f ′low , f ′high〉, 〈flow , fhigh〉, S γ
After C 〈(f + f ′)low , (f + f ′)high〉, S γ

Figure 2: An abstract machine with uniform representations

〈S〉 for a pointer to the sequence of words S, located in the heap. For instance, the
pair of values v1 and v2 is represented by 〈v1, v2〉, and similarly for closures. Regarding
constants, we assume that integers may fit in one word, but that high-precision floating-
point numbers f require two words, written flow and fhigh , therefore f is represented by
〈flow , fhigh〉.

These representations lead to the transition function given in figure 2.

2.3 Inefficiencies of uniform representations

The evaluation mechanism presented above is simple, but not very efficient. As an exam-
ple, let us consider the function f(x, y) = x + 2y, where x and y are reals, represented
in floating-point. Since our calculus does not directly support functions with several
arguments, some transformation is required. We can make it into a function taking a
pair:

fpair = λz : Float× Float. add float(z.fst, add float(z.snd, z.snd))

or into a function taking x and returning another function (this technique is known as
currying):

fcur = λx : Float. λy : Float. add float(x, add float(y, y)).

Both versions are inefficient in terms of heap allocation and memory accesses. First, each
floating-point addition must allocate two words in the heap to store its result, and perform
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SE(iInt) = Const(i)

SE(f Float) = Const(fhigh), Const(flow)

SE(xA) = Access(p + s− 1), . . . , Access(p)

where p = posx(E) and s = size(A)

SE(λx : A. bB) = Abstr(Sx:A,E(bB), Returnsize(B))

SE(b(aA)) = SE(b),SE(a), Applysize(A)

SE(a, b) = SE(a),SE(b)

SE(aA×B.fst) = SE(a), Firstsize(A),size(B)

SE(aA×B.snd) = SE(a), Secondsize(A),size(B)

SE(add float(a, b)) = SE(a),SE(b), AddFloat

SE(add float) = Abstr( Access(0), Access(1), Access(2), Access(3),
AddFloat, Return2)

Figure 3: Compilation scheme with specialized representations

three memory accesses. This is especially absurd in the case of the innermost addition,
whose result is used only once, by the next instruction. Admittedly, a simple analysis of
the code could detect that, and avoid allocating the intermediate result. But the final
result must be allocated anyway, as required by the calling convention.

The passing of the two parameters is also inefficient. In the case of the uncurried form,
the caller has to build a pair of the two arguments, which means allocating two words in
the heap and performing two memory writes, only to have the callee discard the pair and
solely use its components, at the cost of one memory access for each use of a parameter.
In the case of the curried form, the main flaw is the building of an intermediate closure
between the passing of the first and the second argument. (This closure corresponds to
the partial application of the function to its first argument.)

To be more efficient, it is clear now that we have to lift the restriction that any value
must either fit in one word or be allocated, and be able to handle unallocated multi-word
values. To do so, we need to statically keep track of the size of all values and results. (In
case of a register machine with several classes of registers, we would have to record the
suitable register class for each value). Obviously, all this information is already contained
in the typing of the program; what we shall present now is a compilation scheme taking
advantage of the types.

2.4 Evaluation using specialized representations

The new compilation function is given in figure 3. It corresponds to the case where data
representations are as “flat” as possible: floating-point numbers are not allocated, pairs
are simple concatenations of the sequences of words representing their components, and
for closures, only the environment tuple is allocated, but the pair of the code pointer and
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Code Stack Environment
Before Const(v); C S γ
After C v, S γ
Before Access(n), C S γ = 〈v1, . . . , vn, . . .〉
After C vn, S γ
Before Abstr(C1), C S γ
After C 〈C1〉, γ, S γ
Before Applyi, C vi, . . . , v1, 〈C1〉, 〈E1〉, S γ
After C1 〈C〉, γ, S 〈v1, . . . , vi, E1〉
Before Returni, C vi, . . . , v1, 〈C0〉, γ0, S γ
After C0 vi, . . . , v1, S γ0

Before Firsti,j, C wj, . . . , w1, vi, . . . , v1, S γ
After C vi, . . . , v1, S γ
Before Secondi,j, C wj, . . . , w1, vi, . . . , v1, S γ
After C wj, . . . , w1, S γ
Before AddFloat, C f ′low , f ′high , flow , fhigh , S γ
After C (f + f ′)low , (f + f ′)high , S γ

Figure 4: An abstract machine with specialized representations

the environment pointer is unallocated.
We use the convention that all terms are subexpressions of a given closed term a0,

the whole program. We write aA to indicate that a was given the type A in the (unique)
typing derivation of a0, in the empty environment. This annotation is used to determine
the size (number of words used in the representation) of data of type A, which determines
in turn the position of the first word of a variable x in the run-time environment:

size(Int) = 1 posx(∅) is undefined
size(Float) = 2 posx(x : A, E) = 0

size(A→ B) = 2 posx(y : A, E) = size(A) + posx(E)
size(A×B) = size(A) + size(B)

The transition function for the corresponding machine is given in figure 4.
With this new evaluation mechanism, the previous example function (f(x, y) = x+2y)

executes much more efficiently. The uncurried version takes as argument an unallocated
pair of unallocated floating-point numbers, that is, four words on the stack. Intermediate
results are held in the stack, without any heap allocation or heap accesses. The final
result, an unallocated float, is returned to the caller as two words on top of the stack. The
curried version benefits similarly from unallocated floats. In addition, the intermediate
closure returned to the caller between the passing of the first and second arguments is
not allocated either, but left as two words on the stack (a code pointer, an environment
pointer), ready to be applied to the second argument.
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2.5 Performance comparisons

Specialized representations lead to less heap allocation and less memory accesses than
uniform representations. In the case of uniform representations, multi-word values are
always allocated in the heap when created, and reloaded when used, while this is not true
in the case of specialized representations.

On the other hand, specialized representations generate more stack or register moves.
The savings in heap accesses far outweights them, except in extreme cases where some
data are discarded. For instance, applying a function taking a 10-word argument and re-
turning a constant requires ten stack moves using specialized representations, and only one
using uniform representations. This does not happen frequently in actual programming,
however.

3 The polymorphic case

3.1 A polymorphic language

We now consider a polymorphic language based on the second-order λ-calculus, as in-
troduced by Girard [5] and independently by Reynolds [12]. At the level of types, we
introduce universal quantification, with the intent that a term of type ∀X. A[X] can be
used with types A[B] for all types B. At the level of terms, the corresponding elimination
construct is application of a term a to a type B, written a(B). The introduction construct
is abstraction over a type variable X, written ΛX. A.

a ::= c | x | ΛX. a | a(B) | λx : A. b | b(a) | (a, b) | a.fst | a.snd

A ::= X | ∀X. A | Int | Float | A→ B | A×B

Second-order λ-calculus is one of the purest and most general approaches to polymor-
phism, but very few programming languages implement it in its full generality (Poly [8],
Quest [2]). The ML language proposes a restricted version of it: it requires that universal
quantifiers be in prenex position: that all type expressions are of the form ∀X1 . . . ∀Xn. A,
where A does not contain quantifiers. This makes type inference possible, using the well-
known Damas-Milner algorithm [4], while type inference for second-order λ-calculus is still
an open problem. In the following, we do not need the prenex quantification hypothesis,
and therefore consider arbitrary quantification.

Informally, typechecking rules are those of the simply-typed language extended by the
following two rules:

E ` a : A

E ` ΛX. a : ∀X.A

E ` a : ∀X. A

E ` a(B) : A{X ← B}

The actual rules are slightly more complex, since we must take care of the scope of type
variables. This means that not all well-formed type expressions are valid types in a given
context, and similarly for environments. We use two auxiliary predicates, E ` A type,
meaning that A is a valid type in environment E, and ` E env, meaning that E is a valid
environment.
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` E env

E ` c : T (c)

` E1, x : A, E2 env

E1, x : A, E2 ` x : A

E ` A type E, x : A ` b : B

E ` λx : A. b : A→ B

E ` b : A→ B E ` a : A

E ` b(a) : B

E, X type ` a : A

E ` ΛX. a : ∀X.A

E ` a : ∀X. A E ` B type

E ` a(B) : A{X ← B}

E ` a : A E ` b : B

E ` (a, b) : A×B

E ` a : A×B

E ` a.fst : A E ` a.snd : B

The auxiliary predicates are defined as follows:

` ∅ env

` E env X /∈ Dom(E)

` E, X type env

` E env x /∈ Dom(E) E ` A type

` E, x : A env

` E env

E ` Int type E ` Float type

` E1, X type, E2 env

E1, X type, E2 ` X type

E, X type ` A type

E ` ∀X. A type

E ` A type E ` B type

E ` A→ B type E ` A×B type

3.2 Evaluation using uniform representations

In the case where all data have uniform, single-word representations, the abstract machine
needs no special provision to accommodate polymorphic programs. The evaluation mech-
anism of section 2.2 already implements polymorphism in some sense, since, for instance,
the term λx : Int. x is compiled in such a way that it can be applied to data of any type,
not just Int, and return it unmodified. Therefore, we can use the abstract machine of
figure 2 as is, along with the compilation scheme of figure 1. We just have to add the two
following cases, stating that abstraction on a type variable and application to a type have
no computational contents (in this case, they are mere typechecking annotations):

UE(ΛX. a) = UE(a)

UE(a(B)) = UE(a)
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3.3 Evaluation using specialized representations

Let us try now to implement a polymorphic language with non-uniform data represen-
tations, such as multi-word values. Things are not as easy as in the monomorphic case.
We already dismissed the approach of compiling several specializations of a polymorphic
term on demand. Therefore, when compiling a polymorphic term, we are left with no
alternative but to assume that all values of unknown types (that is, whose type is a type
variable) are represented in a uniform way, as in the previous section. However, when we
have more information on the type of a value, we would like to use specialized represen-
tations, for the sake of efficiency. In particular, we hope to compile fully monomorphic
terms as efficiently as in the case of the monomorphic calculus.

This requirement implies that every value has two representations, a uniform one, to
be used for communication with polymorphic functions, and a specialized, efficient one,
possibly spanning several words and taking advantage of special hardware, to be used the
rest of the time. We refer to the former as “the wrapped representation”, and to the latter
as “the unwrapped representation.” When we apply a polymorphic function to a value
of known type, it is likely that the value will be unwrapped, while the function expects it
wrapped. Therefore, the compiler will sometimes have to insert explicit coercions between
the two representations; we write wrapA and unwrapA for the coercions operating on values
of type A. (We mention the type A explicitly to emphasize that those coercions are not
polymorphic functions operating uniformly on all data, but rather functions defined in an
ad-hoc way for each type A.)

Consider the example of the reverse_pair function:

reverse_pair = ΛX. ΛY. λz : X × Y. (z.snd, z.fst).

Since the types of z.fst and z.snd are unknown, these values must be wrapped. However,
z itself is known to be a pair, so there is no need to wrap it. Therefore, the calling
conventions of reverse_pair is as follows: it expects two words on the stack, which are
wrapped representations of z.fst and z.snd, and returns two words on the stack. Now,
let us consider the following application:

reverse_pair (Float) (Int× Float) (3.14, (7, 2.718)).

We assume that the two floating-point constants are allocated “flat”, as well as the two
pairs. The argument is therefore represented by the five words:

(3.14)low , (3.14)high , 7, (2.718)low , (2.718)high .

Before passing it to reverse_pair, some transformations are required: wrap the first com-
ponent of the pair (the first two words,) resulting in the single word 〈(3.14)low , (3.14)high〉;
similarly for the second component, leading to 〈7, (2.718)low , (2.718)high〉. The resulting
two words are a suitable argument for reverse_pair. On return, the stack holds the two
words:

〈7, (2.718)low , (2.718)high〉, 〈(3.14)low , (3.14)high〉.
Two steps of unwrapping lead to the 5-tuple 7, (2.718)low , (2.718)high , (3.14)low , (3.14)high ,
which is the unwrapped representation of ((7, 2.718), 3.14), as expected.
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Let us now consider an example involving higher-order functions:

map_pair = ΛX. ΛY. λf : X → Y. λz : X ×X. (f z.fst, f z.snd)
int_of_float : Float→ Int

map_pair (Float)(Int) (int_of_float) (3.14, 2.718)

According to our principles, the functional map_pair expects its parameter f to be a
function taking one word (a wrapped representation) as argument, and returning one
word (another wrapped representation). In addition, the parameter z should be an un-
wrapped pair of two wrapped values, as previously. However, the int_of_float primitive
function expects an unwrapped floating-point argument (two words), and produces an un-
wrapped integer. Therefore, map_pair cannot be applied directly to int_of_float; it
must be given a version of int_of_float which takes a wrapped floating-point number
as argument, and returns a wrapped integer as result, that is, with obvious notations:

λx : Wrapped(Float). wrapFloat(int_of_float(unwrapFloat(x))).

The rest of this example proceeds as above. The important point is that higher-order
functions may require their functional arguments to be transformed in order to accom-
modate wrapped arguments or results instead of unwrapped ones, and vice-versa. This
transformation does not require recompilation of the function. It merely puts some “stub
code” around it, performing the right wrap and unwrap operations.

The rest of this section formalizes a compilation scheme based on the ideas above. This
is a two-step process: first, a translation into another polymorphic calculus, where the
duality of wrapped/unwrapped representations is taken into account; then, a code gener-
ation phase, combining cases from section 2.4 for the unwrapped values and section 2.2
for the wrapped, uniformly represented values.

3.3.1 A restricted polymorphic calculus

First, the distinction between wrapped and unwrapped representations is made explicit
in the types, through the introduction of a new type operator, Wrapped. Informally, for
all types A, the type Wrapped(A) contains all wrapped representations of values of type
A. At the level of terms, we add the operators wrapA and unwrapA, which map A to
Wrapped(A) and conversely. Then, we restrict polymorphism by requesting that type
variables range over the class of wrapped types, that is all Wrapped(A) where A is a type,
instead of the full class of types. By analogy with bounded quantification [3], we use the
notation ∀X≤Wrapped. A for this restricted universal quantification. Conversely, for type
application a(B), we require that B is a wrapped type, that is either Wrapped(B′), or a
type variable Y . The syntax of the restricted calculus is therefore as follows:

a ::= c | x | wrapA(a) | unwrapA(a) | ΛX ≤ Wrapped. a

| a(B) | λx : A. b | b(a) | (a, b) | a.fst | a.snd

A ::= X | Wrapped(A) | ∀X ≤ Wrapped. A | Int | Float | A→ B | A×B

The typing rules are almost the same as those of section 3.1, with additional rules for
the Wrapped, wrap and unwrap operators, and a different treatment of type application.
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To help distinguishing both calculi, we use
r` instead of ` for the typing judgements of

this calculus. Here are the rules that differ from the one of the general calculus:

E
r` a : A

E
r` wrapA(a) : Wrapped(A)

E
r` a : Wrapped(A)

E
r` unwrapA(a) : A

E, X type
r` a : A

E
r` ΛX ≤ Wrapped. a : ∀X ≤ Wrapped. A

E
r` a : ∀X ≤ Wrapped. A E

r` Y type

E
r` a(Y ) : A{X ← Y }

E
r` a : ∀X ≤ Wrapped. A E

r` B type

E
r` a(Wrapped(B)) : A{X ← B}

E, X type
r` A type

E
r` ∀X ≤ Wrapped. A type

E
r` A type

E
r` Wrapped(A) type

3.3.2 Translation into the restricted calculus

Here, we provide translations for terms and types of the original, polymorphic calculus
into the restricted calculus given above. The translation function is written [ ]. On types,
it simply consists in restricting all quantifications, as follows:

[∀X. A] = ∀X ≤ Wrapped. [A]

and then it is extended as a congruence over all types. On terms, the translation trans-
forms application to a type, so as to generate the kind of “stub” code needed in the
example above. We have:

[ΛX. a] = ΛX ≤ Wrapped. [a]

[a∀X. A(B)] = TX←B([a](Wrapped[B])A)

Again, it is extended as a congruence over all terms. The hard work is done by the twin
auxiliary functions TX←B(aA) and T X←B(aA), defined inductively on A in figure 5. They
are responsible for specializing X to B in any term a of type A. The function T deals
with positive occurences of the coercion, and T with negative occurences. When A = X,
we simply unwrap or wrap a. When X is not free in A, and especially when A is a base
type, nothing needs to be done. When A is a product type, we specialize recursively its
two components, and pair them together. When A is a function type, we build a function
that takes an argument x, specializes it recursively, applies a to x, and specializes the
result. To specialize the argument x, we switch to the other transformation (T instead
of T and conversely), because of the contravariance of the arrow. The case of a universal
type is similar, but easier.

An example of translation is given in figure 6. The translation usually creates many
β-redexes, which we reduced on the fly for the sake of readability.

It remains to show that this translation is sensible, in particular, that it preserves
semantics. First, we can map terms of the restricted calculus back to the full calculus
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T (aX) = unwrap[B](a)

T (aY ) = a if X 6= Y

T (aInt) = a

T (aFloat) = a

T (aA1→A2) = λx : [A1{X ← B}]. T (a(T (xA1))A2) where x not free in a

T (aA1×A2) = (T (a.fstA1), T (a.sndA2))

T (a∀X. A) = a

T (a∀Y. A) = ΛY ≤ Wrapped. T (a(Y )A)

T (aX) = wrap[B](a)

T (aY ) = a if X 6= Y

T (aInt) = a

T (aFloat) = a

T (aA1→A2) = λx : [A1]{X ← Wrapped[B]}. T (a(T (xA1))A2) where x not free in a

T (aA1×A2) = (T (a.fstA1), T (a.sndA2))

T (a∀X. A) = a

T (a∀Y. A) = ΛY ≤ Wrapped. T (a(Y )A)

Figure 5: Generation of stub code to accommodate restricted polymorphism. (T (aA) and
T (aA) abbreviate TX←B(aA) and T X←B(aA), respectively.)

by erasing the wrap and unwrap nodes, and the bounded quantifications. It is easy to
see that for all a, the translation [a] is mapped back to a term which reduces to a. This
means that if we identify the wrapped and unwrapped representations, a and [a] produce
the same results. It remains to show that in [a] we do not use a wrapped value when
an unwrapped one is expected and conversely. However, such an error is caught by the
type system of the restricted calculus. Hence, we just have to prove that the translation
of a well-typed term is well-typed. The following lemma expresses the correctness of the
auxiliary translation functions with respect to types.

Lemma 1 Let a be a term, E be an environment of the restricted calculus, and A, B be
two types of the full polymorphic calculus.

• If E
r` a : [A]{X ← Wrapped[B]}, then E

r` TX←B(aA) : [A{X ← B}].

• If E
r` a : [A{X ← B}], then E

r` T X←B(aA) : [A]{X ← Wrapped[B]}.

Proof: Easy inductive argument on A. 2

Proposition 1 Let a, A, E be a term, a type, and an environment of the full calculus.
If E ` a : A, then in the restricted calculus, [E]

r` [a] : [A].
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TX←Float(double
(X→X)→(X→X))

= λf : Float→ Float. T (double(T (fX→X))X→X)
= λf : Float→ Float. λx : Float.

unwrapFloat(double (λy : Wrapped(Float). wrapFloat(f(unwrapFloat(y))))
(wrapFloat(x))

Hence:
[double∀X. (X→X)→(X→X)(Float)(λx : Float. add float(x)(1))(3.14)]
∗→ unwrapFloat(double (λy : Wrapped(Float). wrapFloat(add float(unwrapFloat(y))(1)))

(wrapFloat(3.14))

Figure 6: An example of translation

Proof: By induction on the length of the proof of E ` a : A. 2

3.3.3 Compiling the restricted calculus

To compile the restricted calculus, we use the same abstract machine with specialized
representations as in section 2.4 (figure 4). The compilation scheme is almost the same.
We simply state that the size of a value of type Wrapped(A) is always one, and give
two additional rules for the translation of wrap and unwrap. The only constraints are
that unwrapA must be the inverse of wrapA, and wrapA must produce one-word data. A
simple solution for wrapA is to heap-allocate data occupying more than one word, and
keep one-word data unchanged; symmetrically, unwrapA performs nothing if size(A) = 1,
and dereferences the value of a otherwise. We add the two corresponding instructions Box
and Unbox in the abstract machine (figure 7). The resulting compilation scheme is given
in figure 8, with the size function defined as follows:

size(Int) = 1

size(Float) = 2

size(A→ B) = 2

size(A×B) = size(A) + size(B)

size(Wrapped(A)) = 1

3.4 Performance comparison

As in the case of the monomorphic calculus, specialized representations lead to less heap
allocation and pointer dereferencing, at the expense of more stack or register moves. In
the case of uniform representations, each primitive performs implicit unwrap operations
on its arguments, and wrap operations on its results. Using specialized representations,
we managed to remove some wrap and unwrap operations when we have enough type
information.
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Code Stack Environment
Before Boxi, C v1, . . . , vi, S γ
After C 〈v1, . . . , vi〉, S γ
Before Unboxi, C 〈v1, . . . , vi〉, S γ
After C v1, . . . , vi, S γ

Figure 7: Additional instructions for wrapping and unwrapping.

It is hard to give more precise comparisons, due to the following fact: in the case
of uniform representation, wrapping and unwrapping are performed by the primitive op-
erations, therefore unwrapping (on the arguments) is delayed as much as possible, while
wrapping (of the results) is performed immediately. We say that with uniform representa-
tions, unwrapping is lazy, while wrapping is eager. In case of specialized representations,
wrapping is delayed until a value is passed to a polymorphic function, while unwrapping
the result of a polymorphic function is performed as soon as possible. Hence, in the case
of specialized representations, unwrapping is eager and wrapping is lazy. This leads to a
rather different behavior, presumably favorable, since wrapping is much more expensive
than unwrapping.

On the negative side, it is true that the stub code inserted to change representations in
the case of functions introduces additional function calls. Reductions at compile-time can
often eliminate them, but for example if the function being transformed is a parameter of
a functional, an additional call will remain.

4 Toward actual programming languages

The highly stylized calculi used in previous sections are not yet close to actual program-
ming languages. They lack many important features: the only data structures are pairs,
there are neither variants, nor general records; and recursive types are not allowed. In
this section, we shall see how to integrate these features into the calculus of the previous
section, and what additional constraints they put on the choice of data representations.
Finally, we discuss the application to the ML language.

4.1 Sum types

While the previous calculi have a rudimentary notion of records, they have no notion of
the symmetric data structure: variants (tagged unions). In typed calculi, variants are
traditionally presented by sum types A + B. The elements of that type are either of type
A, with tag left, or of type B, with tag right. The introduction constructs are the two
constructors inleft and inright; the elimination construct is pattern-matching on the
tag.
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PE(iInt) = Const(i)

PE(f Float) = Const(fhigh), Const(flow)

PE(xA) = Access(p + s− 1), . . . , Access(p)

where p = posx(E) and s = size(A)

PE(wrapA(a)) = PE(a) if size(A) = 1

PE(wrapA(a)) = PE(a), Boxsize(A) if size(A) > 1

PE(unwrapA(a)) = PE(a) if size(A) = 1

PE(unwrapA(a)) = PE(a), Unboxsize(A) if size(A) > 1

PE(λx : A. bB) = Abstr(Px:A,E(bB), Returnsize(B))

PE(b(aA)) = PE(b),PE(a), Applysize(A)

PE(ΛX. a) = PE(a)

PE(a(B)) = PE(a)

PE(a, b) = PE(a),PE(b)

PE(aA×B.fst) = PE(a), Firstsize(A),size(B)

PE(aA×B.snd) = PE(a), Secondsize(A),size(B)

PE(add float(a, b)) = PE(a),PE(b), AddFloat

PE(add float) = Abstr( Access(0), Access(1), Access(2), Access(3),
AddFloat, Return2)

Figure 8: Compilation scheme for the restricted polymorphic calculus, mixing uniform
and specialized representations.

E ` a : A E ` B type

E ` inleft(a) : A + B

E ` A type E ` b : B

E ` inright(b) : A + B

E ` a : A + B E, x : A ` c : C E, y : B ` d : C

E ` case a of inleft(x)→ c | inright(y)→ d : C

Values of a sum type A+B are usually represented as (tag, value) pairs. For instance,
inleft(a) is represented as (0, a), and inright(b) as (1, b). Pattern-matching is then a
simple test on the first component of the pair. Such pairs are not regular pairs, since
the type of the second component depends on the value of the first one (A if it is 0, B
if it is 1). This is no problem if uniform representations are used. In case of specialized
representations, however, it may be the case that an element of type A and an element
of type B have incompatible representations (e.g. different sizes); therefore, elements of
type A + B would have two incompatible representations, depending on the value of the
tag, which is not known at compile-time.

A first solution is to take a representation compatible with both the one of A and the
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one of B. For instance, regarding the size of A + B, we could take

size(A + B) = 1 + max(size(A), size(B))

so that the second component of the dependent pair is always large enough to contain an
element of A, or an element of B. This is the traditional implementation of variants in
Pascal. The main drawback is some waste of space when size(A) is not equal to size(B).
This becomes serious when the sums are heap-allocated, as parts of a large data structure.

Another solution is to systematically use uniform representations for the argument of
a sum constructor. That way, a sum is always represented by one word for the tag, and
one word for the argument, hence size(A + B) = 2. The necessary wrapping operations
are performed by the constructors inleft and inright.

Both approaches are compatible with polymorphism. The compilation scheme given
in section 3.3 easily extends to sums, with two additional cases for the generation of stub
code:

T (aA1+A2) = case a of inleft(x)→ inleft(T (xA1))
| inright(y)→ inright(T (yA2))

and similarly for T (aA1+A2).

4.2 Recursive types

Recursive types describe recursive data structures. In actual programming languages, they
are usually introduced through the ability to name types and to refer to that name in the
definition of the associated type. In a typed calculus, they arise when type expressions
are not restricted to be finite trees any more, but allowed to be rational trees. We use
the notation µX. A for cycles; anywhere in a type expression, µX. A can be replaced by
A{X ← µX. A}, and conversely. For instance, the type of lists of integers is µL. Unit +
Int× L, where Unit is a special type containing exactly one value.

No other modifications of the type system are needed for recursive types. In particular,
they introduce no additional typing rules. The main difficulty with recursive types is that
the definitions we gave by induction on types are now possibly ill-founded: they should
now read as a set of recursive equations, which may have no solution. For instance, with
a naive size function, the size s of integer lists, defined as µL. Unit+Int×L, must verify
s = 1 + max(0, 1 + s), and this equation has no positive solution. This corresponds to
the well-known fact that lists cannot be statically allocated “flat”; pointers must be used
somewhere. Indeed, if we define integer lists as µL. Unit + Int× Wrapped(L), the size s′

of this type is now s′ = 1 + max(0, 1 + 1) = 3, as expected.
To guarantee that all recursive types can be represented, it is necessary to introduce

additional pointers in the representations. For instance, we may require that a value of a
recursive type must be heap-allocated, and represented by a pointer, if it is a component
of a structure (product or sum). This treatment can be integrated into the translation
from general polymorphism to restricted polymorphism, as shown in figure 9.

Similarly, the stub code generated during the translation from general polymorphism
to restricted polymorphism may now involve recursive functions. For instance, the func-
tion f(a) = TX← Float(a

µY. Unit+X×Y ), which specializes generic lists to lists of floats, is
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A recursive, A recursive, A not recursive, A not recursive
B recursive, B not recursive, B recursive, B not recursive

[A×B] Wrapped[A]× Wrapped[B] Wrapped[A]× [B] [A]× Wrapped[B] [A]× [B]

[aA, bB] (wrapA[a], wrapB[b]) (wrapA[a], [b]) ([a], wrapB[b]) ([a], [b])

[aA×B.fst] unwrapA([a].fst) unwrapA([a].fst) [a].fst [a].fst

[aA×B.snd] unwrapB([a].snd) [a].snd unwrapB([a].snd) [a].snd

Figure 9: Translation from general polymorphism to restricted polymorphism, in the
presence of recursive types

defined as:

f(a) = case a of inleft(n)→ inleft(n)
| inright(p)→ inright(unwrapFloat(p.fst), f(p.snd))

That is, we should copy the list while applying the transformation unwrapFloat to each of
its elements. This is not practical, since this copying takes time and space proportional
to the size of the original list, and is not correct when lists can be physically updated.
Instead, we restrict further the representations of sums and products, and require that
their components be systematically wrapped. This ensures that data structures never need
to be recursively copied when converting between uniform and specialized representations.
In particular, we may now take:

TX←B(aA1×A2) = T X←B(aA1×A2) = a
TX←B(aA1+A2) = T X←B(aA1+A2) = a

We already came to that solution in the case of sums. For products, it may look
overly restrictive. For instance, a pair of floating-point numbers cannot be represented
“flat” any more, and requires heap-allocating both numbers. We shall see now how the
introduction of general records instead of mere pairs alleviates this problem.

4.3 Records and variants

Actual programming languages, such as ML, provide general records and variants as
data structures (“concrete types”, in ML terminology), not only binary sums and binary
products. Sums and products allow better naming of the components of a data structure,
as well as more precise control over their types. For instance, coordinates in the plane
could be described by the following record type:

type coord2 = {x: Float; y: Float}

which is more precise than Float × Float. In particular, no polymorphic function can
destructure this record. Therefore, it can be represented efficiently by four words allocated
“flat”, without ever having to copy it with its components wrapped.
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However, it is still possible to define polymorphic data structures by parameterizing
a concrete type declaration, using type variables. For instance, binary polymorphic sum
and product can be defined in the language as follows:

type X * Y = { fst: X; snd: Y };

type X + Y = inleft of X | inright of Y;

As we saw previously the components of such structures must use wrapped representa-
tions, in order to avoid copying. A simple, natural way to ensure this, while preserving
efficient representations for types such as coord2, is to say that the representation of
a concrete type is chosen once for all when it is defined. Components whose type is a
type variable are, as usual, represented in the uniform way. In other terms, parameter-
ized concrete types have one representation, whatever the parameters are: List(Int) and
List(Float) and List(X) where X is a type variable all have compatible representations.
This ensures that no recursive copying of data structures is ever needed.

The necessary wrapping and unwrapping are performed by the primitives for creation
and access. To generate the right conversions, no special rules are needed: it suffices
to treat these primitives as regular functions, possibly polymorphic. For instance, the
projection .x for the type coord2 can be given the type coord2→ Float. Similarly, .fst
has type ∀X.∀Y.X × Y → X, and inleft has type ∀X.∀Y. X → X + Y . When these
constructors are specialized to particular values of X and Y , the translation technique of
section 3.3 automatically inserts the right coercions.

4.4 Application to ML

We have already covered the main features of ML. They can be integrated into com-
pilation using specialized representations, at the cost of additional constraints on the
representations. But it is sometimes necessary to revert to uniform representations. One
may fear that these constraints are so restrictive that there is little benefit from special-
ized representations. This is not the case, however, as specialized representations address
important weaknesses of ML implementations.

First of all, specialized representations allow efficient operations on base types which
do not fit in a word, and in particular on floating-point numbers. This is an absolute
requirement for any general-purpose programming language.

Second, though in ML all functions have exactly one argument (and one result), spe-
cialized representations makes it possible to pass a tuple of arguments to a function
without heap-allocating the tuple, but simply by putting its components on the stack or
in registers. Thus we get the efficiency of functions with several arguments (and several
results as well), without having to modify the source language, nor restrict polymorphism
in any way.

More generally, specialized representations allow monomorphic programs to be com-
piled just as efficiently as in traditional monomorphic languages, such as Modula for
instance. The price to pay for polymorphism is paid only by those programs that actually
use it. This contrasts with a tradition among high-level languages: that advanced features
systematically hamper the performance of programs, even if they are not used.
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5 Conclusions and related work

The techniques presented in this paper combine the cleanliness and expressiveness of
unrestricted polymorphism with the efficiency of specialized representations. We devel-
oped one possible application, getting better implementation of an existing polymorphic
language, ML. The dual application is to add full polymorphism to a conventional, Algol-
like language while keeping efficient compilation of existing programs. One may hope
that both approaches would converge toward languages with powerful type systems and
efficient implementations, without putting strong constraints on the type system (for in-
stance, abstract data types, or records with subtyping are easily accommodated), nor on
the runtime system (in particular, interfacing with a garbage collector is still possible,
using a combination of static type information for unwrapped data and run-time tagging
for wrapped data).

Another interesting feature of our technique is to facilitate interfacing with existing
code written in another language, such as libraries written in C: adopting unwrapped
representations which are compatible with the ones of C (at least for the base types)
alleviates the need for coercions between C and ML data formats.

There is comparatively little work on the problem of data representations in high-level
languages. The fact that some typing is necessary to implement efficiently floating-point
numbers and records is demonstrated in the design of many conventional imperative lan-
guages (such as C [6]), but is scarcely ever stated explicitly. In the area of Lisp compiling,
tagging is known to be a performance bottleneck, and several attempts were made to
avoid it, at least locally. A systematic approach to this problem can be found in a recent
paper by Peterson [10]. He considers mixing tagged and untagged representations, in the
setting of an untyped language, and focuses on finding an optimal mix of representations,
one that minimizes total execution time. However, his analysis is expensive, and does
not consider higher-order functions. Relying on type information, as presented herein, is
certainly sub-optimal, but much more practical.
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