
A Parallel Pipel ined Hough Transform *

N. Guil and E.L. Zapata

Dpt. of Computer Architecture. University of Mdlaga
Campus de Teatinos, P.O. Box 4114

29080-Mdlaga, Spain
E-mail:{nico,ezapata} @atc.ctima.uma.es

A b s t r a c t . The algorithms based on Hough Transform techniques to
detect complex shapes, like circles and ellipses, require excessive com-
puting time. In order to obtain better execution times we propose a new
procedure to parallelize the detection process in a distributed memory
multiprocessor. The sequential algorithm splits the detection of param-
eters into several stages and uses a focusing algorithm to implement the
most complex ones. In this work, each stage is parallelized, in a pipelined
fashion, solving the different problems that arise, specially the best load
distribution to obtain a good balancing.

1 I n t r o d u c t i o n

The Hough Transform (HT) [1] is a method that permits recognising different
shapes in an image. This technique has a great inmunity to noise but needs
strong computat ional and memory requirements. In order to reduce these re-
quirements different techniques have been applied to the sequential algorithms
[2, 4]. However, after applying these improvements, the execution t imes may still
be too high, specially in industrial environments where the decisions have to be
taken in a fast way. In these cases, the use of parallel computers is necessary.

The parallelization of the classical HT can be carried out using loop projec-
tion techniques. These solutions have been used both in multiprocessors with a
coarse grain [6] and in array processors with fine grain [7, 8, 9, 10]. The main
problem in these implementations is the use of a common polling parameter
space tha t causes contention problems in shared memory parallel computers
and a large number of messages in distributed memory parallel computers.

The parallelization of algorithms based on a focusing process, i. e. Multireso-
lution Hough Transform [11], have been achieved using pyramidal architectures.
However, the parallelization of irregular algorithms, like the Fast Hough Trans-
form (FHT) [12] brings several problems related to the load distribution and the
necessity of a mechanism that allows focusing on the solution as soon as possible
eliminating, this way, useless computations.

In this paper, we present a new algorithm for a distributed memory multi-
processor tha t parallelizes the different stages of two fast algorithms for circle

* The work described in this paper was supported by the EC under project BRPR-
CT96-0170

132

and ellipse detection called Fast Circle Hough Transform (FCHT) and Fast El-
lipse Hough Transform (FEHT). These algorithms solve two kinds of problems:
First, the problems that arise in the stages implemented with the classical HT
method, during the polling process in a common parameter space. Second, the
load distribution to obtain a good balancing in the computation of stages where
a focusing algorithm is applied. We have organised the rest of the work as fol-
lows: in the next section we present two new fast sequential algorithms for circle
and ellipse detection. In section 3 we show the different techniques we have per-
formed to carry out the parallelization of the different stages. Finally, in section
4 we evaluate the proposed parallel algorithms with a real image.

2 S e q u e n t i a l a l g o r i t h m s

In this section we present the sequential algorithms for circle and ellipse detec-
tion. The circle and the ellipse algorithms are divided into two and three stages,
respectably. The first stage, in both algorithms, finds the center of the shapes.
In order to detect the center, we apply a new focusing algorithm derived from
the FHT, that employs a new focusing strategy to save computations.

2.1 Focusing a lgor i thm

Focusing algorithms perform a hierarchical approximation to the solution, start-
ing from a coarse description of the parameter space [5]. In order to do this, a
square parameter space is generated and divided into four quadrants. A given
quadrant is divided again if an appreciable number of lines (larger than a thresh-
old value) traverse it. The recursive application of this process will approximate
us to the solution. Hence, during the execution of the FHT algorithm an irregular
tree is generated. The tree nodes are associated to the quadrants. A parent node
generates four children nodes if the number of lines than traverse it is higher
than the threshold value.

2.2 Circle and ellipse de tec t ion

The fast sequential algorithm for the detection of circles we propose in this work,
Fast Circle Hough Transform (FCHT), performs the detection of the circle in
two stages. In the first stage the center of the circle is detected and the points
are labelled using the FHT algorithm. In the second stage the radius is obtained
with the help of this labelling.

The fast algorithm for ellipse detection, Fast Ellipse Hough Transform (FEHT),
developed in this work uses three stages:a) detection of the center by means of
a focusing algorithm that finds the point where a beam of lines intersect; b)
production of the orientation angle and of the semiaxes ratio using information
from previous stages and from the gradient vectors of the figures; c) calculation
of the semiaxes.

133

Gi

%

(a)

�9 Pi

0 j s
h~ijs 7 ~'~

vj

(b)

Fig. 1. (a) The lines that contain the gradient vectors (Gi and Gj) cross the circle center
(b) The line that passes through the intersection point of the tangents generated by Pi
and Pj and their middle point crosses the center of the ellipse.

D e t e c t i o n o f t h e c e n t e r The center detection for the circle a ellipse shapes
is based on geometric properties of these shapes [3], as Figure 1.a and Figure
1.b show. In both cases, a beam of lines crossing the center is generated and the
F H T can be used to find the intersection point.

D e t e c t i o n o f t h e r a d i u s . Once the center of a circle is detected we can calcu-
late its radius using the values for the distance between the center of the circle
and each one of the points of the image. The distance values vote over a one
dimensional space.

D e t e c t i o n o f t h e o r i e n t a t i o n . We can use a two dimensional space where
each point of the ellipse votes for different orientation angles. The m a x i m a ob-
tained after performing the process for M1 the points will indicate the possible
orientation values and the semiaxis ratios of ellipses in the image.

The polling process is not carried out for all the points of the image. It is
restricted only to those points that have participated in finding the center using
a presence vector associated to the lines [5].

D e t e c t i o n o f t h e s e m i a x i s For all the points of the image that have collab-
orated in a m a x i m u m of the previous stage, we perform a polling process. The
max ima found in the space will coincide with the values of the semiaxis of the
detected ellipse. In the case where concentric ellipses are found in the image,
there would be one m ax i m um per ellipse.

134

3 P a r a l l e l i z a t i o n o f t h e s t a g e s

From the execution of the sequential program, we know that the most complex
stage in both algorithms is the center detection due to the high number of
straight lines that are generated and the spread of these lines with respect to
the real center of the shape (the spread will make the focusing process more
difficult). Furthermore, during the execution of this stage, an irregular tree is
generated. The paralellization of this tree is, clearly, the most difficult task in
the algorithm if a good load balance is desired.

Before describing the parallel implementation of the stages we will discuss
some considerations about the parallelization of the irregular algorithm. There
are two possible approximations to the irregular tree parallelization in order to
obtain a good load balancing [13, 14]. In the first one, a static distribution for
the initial load is employed. In the second one, the load distribution is modified
during the execution of the program to obtain a good balancing.

Each approximation will cause a different partition of the problem. In the
static load balancing approximation, the initial data, that is the coefficients of
the straight lines, are shared among the processors. Thus, all the processors will
collaborate to calculate the computation in each node of the tree. However, in
the dynamic load balancing only one processor will carry out the computation
of a node. In this case, all the lines have to be stored in each processor.

In the static load balancing strategy it is necessary to guarantee an adequate
initial distribution for the lines that generates a very similar number of computa-
tions in the different processors. In the dynamic load balancing strategy several
mechanisms have to be established in order to evaluate the load of each proces-
sor, the load rebalancing criteria and the task migration implementation. These
strategies have been evaluated in [15]. The conclusions indicate that the static
strategy is more scalable than the dynamic one, due to the overhead generated,
in communications and computations, by the dynamic balancing mechanisms.

Basing on these results we have choosen the static implementation for the
center detection stage in the parallel circle and ellipse algorithm. Now, the main
problem is to make all the processors perform a similar number of computations.
The next condition will guarantee this behaviour: all the processors have to
contain, approximately, the same number of lines from the different shapes in
the image. This way, all the processors will collaborate, roughly, with the same
number of computations in each node of the tree.

Next, we discuss, in detail, the parallelization of the different stages of the
algorithms.

3.1 E d g e d e t e c t i o n a n d p o i n t p a i r i n g

The operations to know if an image point (x,y) is an edge point have to be
performed within the neighbour points that lie in the window WxW centered at
(x,y). In order to avoid communications among processors, these computations
have to be carried out, as far as possible, in a local way. Therefore, a block
distribution of the image is applied, previous to the edge point computation, so

135

as to restrict the communications to the points in the border of the blocks. At
the end of this process, each processor will obtain the edge points that belong
to its image block.

Before applying the center detection process in the FEHT algorithm, the
pairing of points, to calculate the straight lines, has to be performed. In order
to balance these computations all the edge points have to be known by all the
processors. The overhead in communications and storage for this distribution is
not very important because the rate of edge points in a image is usually very
low (1%). At the end of these communications, all the processors will have an
edge point list:

EL = {El, E2,..., E,~}

where n is the number of edge points in the image.

Using this list, each processor will search for a pairing subset. In fact, pro-
cessor j will find the pairings, taking into account the constraints indicated in
the previous section, between point Ei and Ek (k > j) only if jrnodP = i, where
mod indicates the module operation and P is the number of processors. This as-
signment will permit achieving these three aims: a) the processors will perform
a very similar number of computations to calculate the straight lines, b) the
number of lines obtained in the different processors will be very close, too and
c) each processor will have lines that belong to different objects in the image.

For the circles, like in the ellipse method, a previous distribution of all edge
points in each processor will be done. The edge points will be stored in a list in
each processor. Using this list, each processor pj computes the line generated by
EPi only if imodP is coincident with the index j of the processor.

3.2 C e n t e r d e t e c t i o n

As we have seen, the lines have been distributed among the different processors.
This way each processor will collaborate to the computation in each node. In
order to do this, each processor will calculate the local number of lines that
transverse a quadrant (node). Then, these local numbers are added to find the
total number of lines that cross the quadrant . In this way, global number of
computations of the parallel algorithm will be coincident with the sequential one.
However, to evaluate the efficiency of the parallel algorithm the communications
must be taken into account.

The number of communications in the parallel algorithm will depend of the
focusing policy used to find the solution. In the references two basic methods
have been studied to perform the searching: Depth-First and Best-First. In a first
approximation, the Depth-First policy is the most adequate one to solve a general
problem since it searchs the solution in a fast way, allowing line elimination and
saving, in this manner, computations. However, as indicated in [15], this policy
can be too restrictive when several shapes appear in the image. In this case,
we recommend expanding several nodes per level and choosing the best ones.

136

This new policy will improve the execution time, allowing a faster focusing, and
reduce the number of communications since the total sum for several nodes can
be calculated and broadcast at the same time (the number of packages will be
smaller but their sizes will be larger).

Whenever a center is found, the subsequent stage starts to calculate the rest
of the parameter for this solution, while a new center is been searching. So the
different stages can be working simultaneosly in a pipeline fashion.

3.3 O r i e n t a t i o n a n d s emiaxes r a t e d e t e c t i o n

After applying the center detection, the lines that have contributed to find the
shape centers are labelled with the presence vector. Using the information of
the presence vector, each processor obtains the points that have collaborated
to generate these lines. In this situation, it is important to realise that the
information of the presence vector is local. Thus, the edge points obtained in
each processor can be different. However, the same point or point group can
be obtained in different processors due to the fact that a particular point may
generate lines in several different processors.

The computation in this stage is performed using two nested loops that scan
all the labelled points for a rank of angles within 00 and 180 ~ . The parallelization
could project each loop over the dimension of a mesh using a block distribution
for the data. This distribution would allow the parallelization of the polling
process, but it would need a large number of communications to obtain the
global sum of the partial Hough spaces that have been calculated. To avoid this
problem, we propose a different distribution of data. In this distribution, all the
labelled edge points have to be shared among the processors (this situation is
already a fact) and only the angles will be distributed through assigning different
angle rank to each processor (block distribution). Hence, at the end of the polling
process, all the processors can apply, in parallel, the maximum searching process.

Two communications will be necessary in this stage. First, all the labelled
edge points have to be known by all the processors. This information is not very
]arge since it is going to be restricted to the edge points that have generated lines
that cross the center found. Second, at the end of the maximum detection, the
local maxima found have to be broadcast in order to find the global maximum.

3.4 S e m i a x i s d e t e c t i o n

To parallelize this stage, each processor uses a subset of the labelled edge points
in order to perform the polling on the parameter spaces. Thus, each processor
will calculate a local Hough space. All the local Hough spaces have to be added
before applying the searching maximum process to find the semiaxes values.
However, the computational complexity of this stage is usually very low and the
communication t ime can be longer than the computational one. On the other
hand, the parameter space votes are distributed in a sparse way because they
tend to accumulate in a restricted number of positions. Then, we can limit the

137

information that is going to be transmitted in this stage to only the positions,
in the local Hough spaces, which have a value different from zero.

4 E v a l u a t i o n

In this section we indicate the result obtained in the Paramid multiprocessor
with 16 nodes (one i860 and one transputer per node). The message passing
routines have been written using PVM. On the other hand, the image that we
have used is shown in the Figure 2.a. In this image, four ellipses appear: two are
concentric and two are partially overlapped. The size of the image is 512x512
pixels (256 grey levels).

co

16.0

12.0

8 .0

4 .0

0.0

r ~ Pairing
&-----d,. C e n t a r /
�9 - - �9 Or ien ta t ion , , "
O- - - �9 $ e m i e x e s /"
= $ C o m p l e t e / / - "

Number of processors

(b)

Fig. 2. (a) Original image with ellipses (b) Speedups for the different stages

In the Figure 2.b we show the speedups for the completed algorithm (includ-
ing the execution times for all the stages). The speedups for the pairing points,
and center, orientation and semiaxes detection are also indicated. The best values
are achieved by the pairing and orientation stages. The speedup for the center is
not so good due to the communications needed to calculate the node votes. The
worst values are obtained for the semiaxes detection because the complexity of
the computations are very low. So that , when the number of processor increases
and, so, the communications spend more time, the speedup remains almost con-
stant. In any case, the semiaxes time detection is not significant in the complete
algorithm.

138

5 C o n c l u s i o n s

In this work we have shown the complete parallelization of two algorithms for
circle and ellipse detection based on Hough Transform. The parameter calcula-
tion has been uncoupled using several pipelined stages. Furthermore, each stage
has been parallelized using different data distributions. These techniques have
permited achieving good values for the speedup.

R e f e r e n c e s

1. P.V.C. Hough. "Method and Means for Recognizing Complex Patterns". U.S.
Patent 3069654, 1962.

2. C. Ho and L. Chen. "A Fast ellipse-circle detector using symmetry". Pattern
Recognition 28 (1), p. 117-124 (1995).

3. H.K. Yuen, J. Illindworth y J. Kittler. "Detecting partially occluded ellipses
using the Hough Transform". Image and Vision Computing, 7 (1), 1989, pp.
31-37.

4. H.K. Muammar y M. Nixon. "Tristage transform for multiple ellipse extrac-
tion". IEE Proceedings-E 138 (1), 1991, pp. 27-35.

5. N. Gnil, J. Villalba and E.L. Zapata, "A Fast Hough Transform for segment
detection", IEEE Transactions on Image Processing, vol. 4, no. 11, Noviembre,
pp. 1541-1548,1995.

6. A.N. Choudhary and R. Ponnusamy. "Implementation and evaluation of Hough
Transform algorithms on a shared-memory multiprocessor". Journal of Parallel
and Distributed Computing 12, pp. 178-188, 1991.

7. D. Ben-Tzvi, A. Naovi and M. Sandler. "Syncronous Multiprocessor Implemen-
tation of the Hough Transform". CVGIP 52, pp. 437-446 (1990).

8. A. Rosenfeld, J. Ornelas and Y. Hung. "Hough transform algorithms for mesh-
connected SIMD parallel processor". J. Computer Vision Graphics Imagen Pro-
cessing, Vol. 41, pp. 293-305, 1988.

9. M. Ferreti. "The Generalized Hough Transform on Mesh-Connected Comput-
ers". Journal of Parallel and Distributed Computing, 19, pp. 51-57, 1993.

10. S. Kumar, N. Ranganathan and D. Golgof. "Parallel algorthims for circle de-
tection in images". Pattern Recognition 27 (8), pp. 1019-1028 (1994).

11. M. Atiquzzaman. "Multiresolution Hough Transform. An efficient method of
detecting patterns in images", IEEE Transactions on PAMI 14 (11), 1090-1095
(1992).

12. H. Li, M.A. Lavin and R.J. Le Master, "Fast Hough Transform: A Hierarchical
Approach", CVGIP 36, pp. 139-161, 1986.

13. D. Gerogiannis and S.C. Orphanoudakis. "Load Balancing Requirements in Par-
allel Implementation of Image Feature Extraction Tasks". IEEE Transactions
on Parallel and Distributed Systems, Vol. 4, 9, 1993.

14. M.H. Willebeek-LeMair and A.P. Reeves. "Strategies for Dynamic Load Bal-
ancing on Highly Parallel Computers". IEEE Transactions on parallel and dis-
tributed processing (4), 9, 979-993, 1993.

15. N. Guil, "Hough Transform in Multiprocessors", PhD dissertation, Dept. Com-
puter Architecture, Malaga University, December, 1995.

