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A b s t r a c t .  The algorithms based on Hough Transform techniques to 
detect complex shapes, like circles and ellipses, require excessive com- 
puting time. In order to obtain better execution times we propose a new 
procedure to parallelize the detection process in a distributed memory 
multiprocessor. The sequential algorithm splits the detection of param- 
eters into several stages and uses a focusing algorithm to implement the 
most complex ones. In this work, each stage is parallelized, in a pipelined 
fashion, solving the different problems that arise, specially the best load 
distribution to obtain a good balancing. 

1 I n t r o d u c t i o n  

The Hough Transform (HT) [1] is a method that  permits  recognising different 
shapes in an image. This technique has a great inmunity to noise but needs 
strong computat ional  and memory  requirements. In order to reduce these re- 
quirements different techniques have been applied to the sequential algorithms 
[2, 4]. However, after applying these improvements,  the execution t imes may  still 
be too high, specially in industrial environments where the decisions have to be 
taken in a fast way. In these cases, the use of parallel computers  is necessary. 

The parallelization of the classical HT can be carried out using loop projec- 
tion techniques. These solutions have been used both in multiprocessors with a 
coarse grain [6] and in array processors with fine grain [7, 8, 9, 10]. The main 
problem in these implementations is the use of a common polling parameter  
space tha t  causes contention problems in shared memory  parallel computers  
and a large number  of messages in distributed memory  parallel computers.  

The parallelization of algorithms based on a focusing process, i. e. Multireso- 
lution Hough Transform [11], have been achieved using pyramidal  architectures. 
However, the parallelization of irregular algorithms, like the Fast Hough Trans- 
form (FHT) [12] brings several problems related to the load distribution and the 
necessity of a mechanism that  allows focusing on the solution as soon as possible 
eliminating, this way, useless computations.  

In this paper, we present a new algorithm for a distributed memory  multi- 
processor tha t  parallelizes the different stages of two fast algorithms for circle 

* The work described in this paper was supported by the EC under project BRPR- 
CT96-0170 



132 

and ellipse detection called Fast Circle Hough Transform (FCHT) and Fast El- 
lipse Hough Transform (FEHT). These algorithms solve two kinds of problems: 
First, the problems that arise in the stages implemented with the classical HT 
method, during the polling process in a common parameter space. Second, the 
load distribution to obtain a good balancing in the computation of stages where 
a focusing algorithm is applied. We have organised the rest of the work as fol- 
lows: in the next section we present two new fast sequential algorithms for circle 
and ellipse detection. In section 3 we show the different techniques we have per- 
formed to carry out the parallelization of the different stages. Finally, in section 
4 we evaluate the proposed parallel algorithms with a real image. 

2 S e q u e n t i a l  a l g o r i t h m s  

In this section we present the sequential algorithms for circle and ellipse detec- 
tion. The circle and the ellipse algorithms are divided into two and three stages, 
respectably. The first stage, in both algorithms, finds the center of the shapes. 
In order to detect the center, we apply a new focusing algorithm derived from 
the FHT, that employs a new focusing strategy to save computations. 

2.1 Focusing a lgor i thm 

Focusing algorithms perform a hierarchical approximation to the solution, start- 
ing from a coarse description of the parameter space [5]. In order to do this, a 
square parameter space is generated and divided into four quadrants. A given 
quadrant is divided again if an appreciable number of lines (larger than a thresh- 
old value) traverse it. The recursive application of this process will approximate 
us to the solution. Hence, during the execution of the FHT algorithm an irregular 
tree is generated. The tree nodes are associated to the quadrants. A parent node 
generates four children nodes if the number of lines than traverse it is higher 
than the threshold value. 

2.2 Circle and  ellipse de tec t ion  

The fast sequential algorithm for the detection of circles we propose in this work, 
Fast Circle Hough Transform (FCHT), performs the detection of the circle in 
two stages. In the first stage the center of the circle is detected and the points 
are labelled using the FHT algorithm. In the second stage the radius is obtained 
with the help of this labelling. 

The fast algorithm for ellipse detection, Fast Ellipse Hough Transform (FEHT), 
developed in this work uses three stages:a) detection of the center by means of 
a focusing algorithm that finds the point where a beam of lines intersect; b) 
production of the orientation angle and of the semiaxes ratio using information 
from previous stages and from the gradient vectors of the figures; c) calculation 
of the semiaxes. 
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Fig. 1. (a) The lines that contain the gradient vectors (Gi and Gj) cross the circle center 
(b) The line that passes through the intersection point of the tangents generated by Pi 
and Pj and their middle point crosses the center of the ellipse. 

D e t e c t i o n  o f  t h e  c e n t e r  The center detection for the circle a ellipse shapes 
is based on geometric properties of these shapes [3], as Figure 1.a and Figure 
1.b show. In both cases, a beam of lines crossing the center is generated and the 
F H T  can be used to find the intersection point. 

D e t e c t i o n  o f  t h e  r a d i u s .  Once the center of a circle is detected we can calcu- 
late its radius using the values for the distance between the center of the circle 
and each one of the points of the image. The distance values vote over a one 
dimensional space. 

D e t e c t i o n  o f  t h e  o r i e n t a t i o n .  We can use a two dimensional space where 
each point of the ellipse votes for different orientation angles. The m a x i m a  ob- 
tained after performing the process for M1 the points will indicate the possible 
orientation values and the semiaxis ratios of ellipses in the image. 

The polling process is not carried out for all the points of the image. It  is 
restricted only to those points that  have participated in finding the center using 
a presence vector associated to the lines [5]. 

D e t e c t i o n  o f  t h e  s e m i a x i s  For all the points of the image that  have collab- 
orated in a m a x i m u m  of the previous stage, we perform a polling process. The 
max ima  found in the space will coincide with the values of the semiaxis of the 
detected ellipse. In the case where concentric ellipses are found in the image, 
there would be one m ax i m um  per ellipse. 
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3 P a r a l l e l i z a t i o n  o f  t h e  s t a g e s  

From the execution of the sequential program, we know that  the most complex 
stage in both algorithms is the center detection due to the high number of 
straight lines that  are generated and the spread of these lines with respect to 
the real center of the shape (the spread will make the focusing process more 
difficult). Furthermore, during the execution of this stage, an irregular tree is 
generated. The paralellization of this tree is, clearly, the most difficult task in 
the algorithm if a good load balance is desired. 

Before describing the parallel implementation of the stages we will discuss 
some considerations about the parallelization of the irregular algorithm. There 
are two possible approximations to the irregular tree parallelization in order to 
obtain a good load balancing [13, 14]. In the first one, a static distribution for 
the initial load is employed. In the second one, the load distribution is modified 
during the execution of the program to obtain a good balancing. 

Each approximation will cause a different partition of the problem. In the 
static load balancing approximation, the initial data, that is the coefficients of 
the straight lines, are shared among the processors. Thus, all the processors will 
collaborate to calculate the computation in each node of the tree. However, in 
the dynamic load balancing only one processor will carry out the computation 
of a node. In this case, all the lines have to be stored in each processor. 

In the static load balancing strategy it is necessary to guarantee an adequate 
initial distribution for the lines that  generates a very similar number of computa- 
tions in the different processors. In the dynamic load balancing strategy several 
mechanisms have to be established in order to evaluate the load of each proces- 
sor, the load rebalancing criteria and the task migration implementation. These 
strategies have been evaluated in [15]. The conclusions indicate that  the static 
strategy is more scalable than the dynamic one, due to the overhead generated, 
in communications and computations, by the dynamic balancing mechanisms. 

Basing on these results we have choosen the static implementation for the 
center detection stage in the parallel circle and ellipse algorithm. Now, the main 
problem is to make all the processors perform a similar number of computations. 
The next condition will guarantee this behaviour: all the processors have to 
contain, approximately, the same number of lines from the different shapes in 
the image. This way, all the processors will collaborate, roughly, with the same 
number of computations in each node of the tree. 

Next, we discuss, in detail, the parallelization of the different stages of the 
algorithms. 

3.1 E d g e  d e t e c t i o n  a n d  p o i n t  p a i r i n g  

The operations to know if an image point (x,y) is an edge point have to be 
performed within the neighbour points that lie in the window WxW centered at 
(x,y). In order to avoid communications among processors, these computations 
have to be carried out, as far as possible, in a local way. Therefore, a block 
distribution of the image is applied, previous to the edge point computation, so 



135 

as to restrict the communications to the points in the border of the blocks. At 
the end of this process, each processor will obtain the edge points that  belong 
to its image block. 

Before applying the center detection process in the FEHT algorithm, the 
pairing of points, to calculate the straight lines, has to be performed. In order 
to balance these computations all the edge points have to be known by all the 
processors. The overhead in communications and storage for this distribution is 
not very important  because the rate of edge points in a image is usually very 
low (1%). At the end of these communications, all the processors will have an 
edge point list: 

EL = {El,  E2,..., E,~} 

where n is the number of edge points in the image. 

Using this list, each processor will search for a pairing subset. In fact, pro- 
cessor j will find the pairings, taking into account the constraints indicated in 
the previous section, between point Ei and Ek (k > j) only if jrnodP = i, where 
mod indicates the module operation and P is the number of processors. This as- 
signment will permit achieving these three aims: a) the processors will perform 
a very similar number of computations to calculate the straight lines, b) the 
number of lines obtained in the different processors will be very close, too and 
c) each processor will have lines that  belong to different objects in the image. 

For the circles, like in the ellipse method, a previous distribution of all edge 
points in each processor will be done. The edge points will be stored in a list in 
each processor. Using this list, each processor pj computes the line generated by 
EPi only if imodP is coincident with the index j of the processor. 

3.2 C e n t e r  d e t e c t i o n  

As we have seen, the lines have been distributed among the different processors. 
This way each processor will collaborate to the computation in each node. In 
order to do this, each processor will calculate the local number of lines that  
transverse a quadrant (node). Then, these local numbers are added to find the 
total number of lines that  cross the quadrant .  In this way, global number of 
computations of the parallel algorithm will be coincident with the sequential one. 
However, to evaluate the efficiency of the parallel algorithm the communications 
must be taken into account. 

The number of communications in the parallel algorithm will depend of the 
focusing policy used to find the solution. In the references two basic methods 
have been studied to perform the searching: Depth-First and Best-First. In a first 
approximation, the Depth-First policy is the most adequate one to solve a general 
problem since it searchs the solution in a fast way, allowing line elimination and 
saving, in this manner, computations. However, as indicated in [15], this policy 
can be too restrictive when several shapes appear in the image. In this case, 
we recommend expanding several nodes per level and choosing the best ones. 
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This new policy will improve the execution time, allowing a faster focusing, and 
reduce the number of communications since the total sum for several nodes can 
be calculated and broadcast at the same time (the number of packages will be 
smaller but their sizes will be larger). 

Whenever a center is found, the subsequent stage starts to calculate the rest 
of the parameter for this solution, while a new center is been searching. So the 
different stages can be working simultaneosly in a pipeline fashion. 

3.3 O r i e n t a t i o n  a n d  s emiaxes  r a t e  d e t e c t i o n  

After applying the center detection, the lines that  have contributed to find the 
shape centers are labelled with the presence vector. Using the information of 
the presence vector, each processor obtains the points that  have collaborated 
to generate these lines. In this situation, it is important  to realise that  the 
information of the presence vector is local. Thus, the edge points obtained in 
each processor can be different. However, the same point or point group can 
be obtained in different processors due to the fact that a particular point may 
generate lines in several different processors. 

The computation in this stage is performed using two nested loops that  scan 
all the labelled points for a rank of angles within 00 and 180 ~ . The parallelization 
could project each loop over the dimension of a mesh using a block distribution 
for the data. This distribution would allow the parallelization of the polling 
process, but it would need a large number of communications to obtain the 
global sum of the partial Hough spaces that have been calculated. To avoid this 
problem, we propose a different distribution of data. In this distribution, all the 
labelled edge points have to be shared among the processors (this situation is 
already a fact) and only the angles will be distributed through assigning different 
angle rank to each processor (block distribution). Hence, at the end of the polling 
process, all the processors can apply, in parallel, the maximum searching process. 

Two communications will be necessary in this stage. First, all the labelled 
edge points have to be known by all the processors. This information is not very 
]arge since it is going to be restricted to the edge points that  have generated lines 
that  cross the center found. Second, at the end of the maximum detection, the 
local maxima found have to be broadcast in order to find the global maximum. 

3.4 S e m i a x i s  d e t e c t i o n  

To parallelize this stage, each processor uses a subset of the labelled edge points 
in order to perform the polling on the parameter spaces. Thus, each processor 
will calculate a local Hough space. All the local Hough spaces have to be added 
before applying the searching maximum process to find the semiaxes values. 
However, the computational complexity of this stage is usually very low and the 
communication t ime can be longer than the computational one. On the other 
hand, the parameter space votes are distributed in a sparse way because they 
tend to accumulate in a restricted number of positions. Then, we can limit the 
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information that  is going to be transmitted in this stage to only the positions, 
in the local Hough spaces, which have a value different from zero. 

4 E v a l u a t i o n  

In this section we indicate the result obtained in the Paramid multiprocessor 
with 16 nodes (one i860 and one transputer per node). The message passing 
routines have been written using PVM. On the other hand, the image that  we 
have used is shown in the Figure 2.a. In this image, four ellipses appear: two are 
concentric and two are partially overlapped. The size of the image is 512x512 
pixels (256 grey levels). 
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Fig. 2. (a) Original image with ellipses (b) Speedups for the different stages 

In the Figure 2.b we show the speedups for the completed algorithm (includ- 
ing the execution times for all the stages). The speedups for the pairing points, 
and center, orientation and semiaxes detection are also indicated. The best values 
are achieved by the pairing and orientation stages. The speedup for the center is 
not so good due to the communications needed to calculate the node votes. The 
worst values are obtained for the semiaxes detection because the complexity of 
the computations are very low. So that ,  when the number of processor increases 
and, so, the communications spend more time, the speedup remains almost con- 
stant. In any case, the semiaxes time detection is not significant in the complete 
algorithm. 
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5 C o n c l u s i o n s  

In this work we have shown the complete parallelization of two algorithms for 
circle and ellipse detection based on Hough Transform. The parameter  calcula- 
tion has been uncoupled using several pipelined stages. Furthermore, each stage 
has been parallelized using different data  distributions. These techniques have 
permited achieving good values for the speedup. 
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