
System-Level Memory Management for Weakly
Parallel Image Processing*

Koen Danckaert 1, Francky Cat thoor 2 and Hugo De Man 2

1 IMEC, VSDM Division, Kapeldreef 75, B-3001 Leuven, Belgium
2 IMEC, VSDM division and Katholieke Universiteit Leuven

Abs t rac t . Application studies in the domain of image and video pro-
cessing indicate that between 50 and 80% of the area cost in (application-
specific) architectures for multi-dimensional (M-D) signal processing is
due to memory units. This is true for both single-processor and weakly
parallel processor realizations. This paper has two main contributions.
First, to reduce this dominant cost, we propose to address the system-
level storage organization for the M-D signals as a first step in the overall
methodology to map these applications. Secondly, we will demonstrate
the usefulness of this novel approach based on a realistic image process-
ing test-vehicle, namely a cavity detection algorithm. The novel design
results for this relevant application are useful as such.

1 Introduction and Related Work

In multi-media applications and others that make use of large multi-dimensional
data structures, a considerable amount of memory is required. The ever increas-
ing storage requirements in these applications make the memory cost usually
one of the dominant contributions to the total system cost. This is especially
true for embedded systems [8, 12].

Up to now, only few hardware synthesis systems [12, 16, 18] t ry to reduce the
storage requirements for array-type data structures, always focussed on single-
processor realizations and with (severe) model limitations. Also in our own previ-
ous work on ATOMIUM [14, 19], we have only focussed on single-processor stor-
age, dealing with loop transformations, memory allocation and in-place storage
reduction for complex M-D signal processing.

Although many software compilers t ry to come up with the best array layout
in memory for optimal cache performance (see e.g. [6, 9]) they do not t ry to
directly reduce the storage requirements as memory is allocated based on the
available variable declarations. However, in general, this can lead to a large
over-allocation, compared to the maximal amount of memory which is really
needed over time. Moreover, the number of transfers to large memories is not
fully minimized this way. Consequently, there is a loss in power consumption
and overhead cycles.

* This research was partly sponsored by the JESSI AC75 project of the EC

218

Locally optimized
,H"

Globally optimized
=> exploration!

f Standard subsystem :
detailed solution
locally optimized

by expert

E.g.: 2D convolution

f Subsy em 1
New ~ J resemblesa J

complex - J ~ s t a n d a r d solution~-.-~
subsystem =minim I but needs s m a l l |

Buffer ~, adaptations , J

E.g.: format conversion E.g.: DCT for MPEG

Fig. 1. Data transfer and storage exploration for data dominated systems

To remedy this situation, the system-level memory management (SLMM)
oriented methodology presented in this paper applies more aggressive loop and
data flow transformations than previously done. These transformations are able
to significantly reduce the storage requirements for statically allocated memory.
Moreover, the previously applied compiler techniques tackle the parallelization
and load balancing issues as the only key point so they perform these first in the
overall methodology [1, 2, 4, 5, 13, 15, 20]. Typically, also regular loop scheduling
[7] or irregular multi-processor scheduling [10, 11, 17] techniques are performed
during or just after this stage. For the typical image processing system in Fig. 1,
this means that all the subsystems are treated separately and each of these
will be compiled in a locally optimized way onto the parallel processor. This
strategy leads to a good parallel solution but unfortunately, it will typically
give rise to a significant buffer overhead for the mismatch between the data
produced and consumed in the different subsystems. To solve this, our approach
first applies storage and transfer oriented optilnizations between the different
systems. Initially, all the subsystems containing M-D processing are combined
into one global specification model, and then optimized as a whole in terms of
SLMM, prior to the other tasks.

2 Problem Definit ion

As indicated, in our approach we will first perform the storage and transfer
optimization, before other optimizations or parallel processor mapping stages.
The input will be a control/data flow-graph CDFG model where all data depen-
dencies have been made explicit to allow formal compile-time analysis, i.e. cor-
responding to a single-assignment description.

We also require that the subsystems are not treated separately but as a whole.
For the typical image processing system in Fig. 1, this means that initially, all the
subsystems containing M-D processing are combined into one CDFG "bubble",
specified in single assignment form wherever possible and then optimized as a
whole in terms of SLMM.

The SLMM stages internally can then be applied in terms of loop/data flow
transformations, memory hierarchy and allocation decisions, and in-place map-

2 1 9

DistdbutedMemoryArchitecture

I D AM I=
single data-path

(black box)
= virtual processor

Fig. 2. Architectural model for SLMM

ping, largely similar to the single-processor case [14]. These stages treat the
data-path as if it is one global data-path (Fig. 2).

The output of the SLMM stage will be a transformed optimized CDFG with
restrictions on control and data flow, and a preliminary distributed background
memory organization. These two descriptions can then be used as input for t h e
subsequent processor partitioning and load balancing stage and from there to
the final processor HW synthesis or SW compilation stages, dealt with by more
traditional techniques.

If possible, the partitioning has to be done in a way that is not cutting over
process communication links which involve M-D streams produced and consumed
differently u so only scalar streams 3 are cut. If this is not feasible, the two
communicating subprocesses have to be connected by a memory subsystem which
is shared between the corresponding processors.

More details and formalization of the tasks in this methodology will be dis-
cussed in future papers. Here, due to lack of space we will only illustrate our
approach in an intuitive way on a typical test-vehicle.

3 I l l u s t r a t i o n o n a R e a l i s t i c D e s i g n : C a v i t y D e t e c t i o n

Cavity (or edge) detection is an important step in many (in particular medical)
image processing applications [3]. This algorithm mainly consists of a sequence
of four distinct steps, each of which computes new matrix information from the
output of the previous step. So, these steps can be seen as separate processes.
A classical approach to parallelize this irregular algorithm on a weakly parallel
processor [10, 11, 17] would be to assign each of these steps to its own processor,
and to pipeline the processing in a coarse-scale way: while processor 1 is working
on frame x, processor 2 is working on frame x-l, and so on. This means, however,
that we need an enormous amount of memory: one image frame per processor,
plus one for reading in a new frame (as in Fig. 1). All these frames have to be
stored in background memory, and have to be transferred between a processor
and a memory in each step. So this is unacceptable from the viewpoint of both
storage area and overall power.

The proposed SLMM approach can significantly reduce the area and power
requirements of this application. To illustrate this, we will first consider the

Note that a scalar signal could also be an initially M-D signal which has been "pro-
jected" into a sequential scalar communication

220

function GaussBlur (image_in: W[N][N])image_out: W[N][N] =
begin]/Compute horizontal weighted average

(x : 0 .. N-l):: (y : 0 .. N-l):: begin
tmpl[x][y][0]=0; (k : -GB .. GB)::

tmpl[x][y][k+GB+l] = tmpl[x][y][k+GB] + Gauss[k]*image_in[x+k][y];
end;
{ Compute vertical weighted average (analogous) }

end;

function ComputeEdges (image_in: W[N][N])image_out: W[N][N] =
{ Replace every pixel with the maximum of difference with its neighbors }

function Reverse (image_in : WIN]IN])image_out: W[N][N] =
{ Search for the maximum value that occurs : maxval }
{ Subtract every pixelvalue from this maximum value }

function DetectRoots (image.in : W[N][N])image_out: bool[N][N] =
{ image_out[x][y] is true if no neighbors are bigger than image_in[x][y] }

function LabelRoots (image_in : bool[N][N]) image_out : int[N][N] =
{ Analogous, but only looks at neighbors on line y-1 (not y+l) . }

Fig. 3. Initial description of the cavity detection algorithm

mapping of the algorithm on one virtual processor, as illustrated in Fig. 2. Then
we will look at some ways to parallelize the result without sacrificing storage
and transfer overhead for improved throughput or good load balancing.

The main functionality of the algorithm as specified by the designers is given
in Fig. 3. The four steps are the functions GaussBlur, ComputeEdges, Detect-
Roots and LabelRoots. There is another function~ Reverse, which is executed
between ComputeEdges and DetectRoots, but we: will show that this function
can be removed as part of a system-level data-flow transformation. We will as-
sume that the image enters and leaves the system in the conventional row-wise
fashion. Also other formats exhibit similar optimization possibilities however.

3.1 O p t i m i z e d M e m o r y O r g a n i z a t i o n on O n e V i r t u a l P roces so r

In the initial description of the algorithm, each step is applied to the image as
a whole. From the viewpoint of memory management, this is a bad solution,
as it means that in every step, the whole image nmst be read from background
memory and written back to it. A better solution would be to read one row of
the image, and apply all steps of the algorithm to this row directly. However,
this is not possible as such: for example, to apply ComputeEdges to line y,
GaussBlur must already have been applied to line y + l . Furthermore, some local
transformations are needed. These issues will be discussed next.

Loca l O p t i m i z a t i o n in G a u s s B l u r . In the first part of GaussBlur, every
pixel is replaced by a weighted average of its horizontal neighbors. In the initial

221

GaussBlur
y-GB

. . . . ~

ComputeEdges

Fig. 4. Shaded boxes indicate computations.

description, this is executed in a column-wise fashion. So, for every pixel, all
its horizontal neighbors have to be read from background memory, or we need
a foreground buffer of 2*GB+I columns (GB is typically 1 or 2). Moreover,
because the image enters the system row-wise, we need a background memory
in which the next incoming frame can be stored while we are processing the
previous one. If we interchange the x and y loops, there is much better data
locality: we only need a foreground buffer of 2*GB+I pixels. Also we don't need
an extra background memory, as the processor can now accept the rows of the
image as they enter the system.

Now consider the second part of GaussBlur, where a weighted average of the
vertical neighbors of every pixel is computed. We can optimize memory usage
in the same manner as above, in which case we have to work in a column-wise
fashion this time. As the output of the previous step is row-wise, this means
that we have to write the whole image to background memory between the two
steps. So, here it will be better to continue to work row-wise, which means we
only need a foreground buffer of 2*GB+I rows.

S imi la r Local T rans f o rm a t i ons can be applied to the other functions. For
example, in ComputeEdges, we only need the eight direct neighbors of every
pixel to compute its new value. So to compute the values of line y, we need the
pixels of lines y-l, y and y+l . This means that a buffer of three lines is sufficient
to avoid extensive data transfers from background memory to data-path. In the
second column of Table 1, the results of these local transformations are shown.

G loba l T r a n s f o r m a t i o n o f G a u s s B l u r a n d C o m p u t e E d g e s . To perform
ComputeEdges on line y, we need the pixels of lines y-1, y and y+ 1. So instead of
first performing GaussBlur on the whole image, ComputeEdges can be applied
to line y-1 already when GaussBlur has just been applied to line y. In this way,
we don't need to store the intermediate image in a background memory between
these two functions - - at least if we use three extra foreground line buffers, as
depicted in Fig. 4.

To accomplish this, we have to join the functions GaussBlur and Com-
puteEdges. Then we can apply a combined loop folding and merging transforma-
tion to the y-loop. A similar global transformation can be applied to DetectRoots
and LabelRoots, but not to Reverse, as explained in the next paragraph. The

222

Table 1. Overview of the reduction of background memories and data transfers,
accomplished by the different system-level transformations, and the amount of
foreground buffers needed. BG=Background, FG=Foreground, 1 BG memory
means 1 BG memory for a whole image frame.

Initial After local y-loop After data- x-loop
algo trafo folded flow trafo folded

BG reads (*N ~) 4'GB+26 6 1 0 0
BG writes (*N 2) 5 4 1 0 0

FG line buffers 0 2*GB+I 2*GB+4 2*GB+9 2*GB+5

BG memories 3 1 1 0 0

reduction of the number of data transfers as a result of these global transforma-
tions, is shown in the third column of Table 1.

The Funct ion Reverse. The technique described above cannot be applied to
Reverse, because in this function the maximum value that occurs in the whole
image is first computed. If we only consider the number of operations to be
performed, the computation of the maximum represents only a small fraction of
the total arithmetic effort of the algorithm. However, if we look at the number
of transfers and the amount of background memory needed, this computation
means that the whole image has to pass through the processor, before the next
step of the algorithm can be performed. So we have a huge amount of extra
transfers, and we need an extra background memory for one image. Prom the
viewpoint of memory management, the computation of a maximum is a real
bottle-neck, that cannot be directly circumvented.:

In this case however, the function Reverse is a direct translation from an
original system-level description of the algorithm, where specific functions have
been reused. It can be avoided by adapting the next step of the algorithm (De-
tectRoots) by means of a data flow transformation. Instead of image_out Ix] [y] =
i f (p > {q}), where p,q are pixel elements produced by Reverse, we can write
image_out = i f (- p < {-q}) or image_out = i f (c - p < { c - q}), where
c = mazva l is a constant. So instead of performing the Reverse function and
implementing the original DetectRoots, we will omit the Reverse function and
implement instead:

{ image_out[x][y] is true if no neighbors are smaller than image_in[x][y] }

In this way the storage and access bottle-neck is totally avoided.

The Funct ions De tec tRoo t s and Labe lRoots . Because the DetectRoots
and LabelRoots steps are similar to ComputeEdges, we can now apply the same
technique as above. Assuming that GB=I, we now need a total of 11 line buffers.
Clearly, the amount of data transfers has been further reduced. See Table 1.

I ?.

17,

223

Fig. 5. Flow of data through buffers

F u r t h e r Opt imiza t ions . By applying a loop folding transformation to the x-
loop (as we did to the y-loop), another 4 buffers can be optimized away, which
brings us to 7 line buffers. See Table 1.

3.2 Para l le l iza t ion of the s torage and t ransfer op t imized so lu t ion

In this section we will look at some ways to parallelize the optimized algorithm.
We will assume that a speedup of about 4 is required, which corresponds well
with the typically available amount of parallelism in the current generation of
multi-media processors like the C80 of TI and the TriMedia of Philips.

I r r egu l a r Coarse-gra ln Pipel ining. A first method to parallelize the algo-
rithm has already been mentioned in the beginning of this section: coarse-grain
pipelining (at the level of the image frames). This can work well for load bal-
ancing on a four-processor system, but is clearly an unacceptable method if we
have efficient memory management in mind.

Regu l a r D a t a Paral le l ism. A second parallelization method (as suggested
more by the data partitioning methods supported in [1, 2, 13", 20]) is to distribute
the image itself over the four processors. Because the image enters row-wise, we
have to choose a column-wise partitioning to keep the processors busy. In this
way, we will need 7 line-buffers per processor, or 28 in total, but their length
is only a quarter of a line. The flow of data through these 28 buffers is shown
in Fig. 5. This is still much more expensive than just 7 simple buffers, which
are standard components that can be realized in a very compact way. Moreover
idle cycles will have to be introduced with this solution (this can be overcome by
replacing the FIFO buffers with SRAM buffers, which are much more expensive).

F ine -g ra in Pipel in ing. A third way to parallelize this algorithm consists in
assigning each of the steps of the algorithm to a different processor. Still assum-
ing that GB- 'I , processor one has a buffer of two lines (y-1 and y). Line y + l
enters the processor as a scalar stream; synchronously the GaussBlur-step can
be performed on line y, the result of which can be sent to the second processor
as a scalar stream. This one can concurrently (and synchronously) apply the
ComputeEdges step to line y-1 and so on. In this way we only need a buffer of

224

two lines per processor (and one for the last processor), or 7 in total! This is
the same amount we needed for the mono-processor case. So we have achieved
what we were looking for: improved performance without sacrificing storage and
transfer overhead (which would translate in area and power overhead).

Note that the load balance will be less optimal than in the data parallel solu-
tion. In many cases, the parallelization research community focuses on avoiding
idle cycles and achieving a better load balance. For data dominated designs (es-
pecially embedded ones) it is however at least as important to look at the data
storage and transfer organization. If we can avoid a buffer of 32 Kbit by using
an extra processor, this can be advantageous even is this processor would be
idle 90% of the time (which would also mean we have a very bad load balance),
because the cost of this extra processor in terms of area and power is usually
less than the cost of a 32Kbit on-chip memory.

4 Conclusion

In this paper, a summary has been made of the main storage related issues to be
resolved in the system-level mapping context of data-dominated signal process-
ing applications on weakly parallel processors. It has been motivated why the
novel SLMM methodology proposed here has a good chance to solve many of
the efficiency problems which arise when mapping storage dominated image and
video processing applications to embedded parallel processors. The feasibility of
this approach has been substantiated on a realistic image processing applica-
tion. Moreover, the requirements on the context of this SLMM work have been
addressed, with emphasis on the interaction with the other system-level issues.
Several aspects about the internals of the SLMM tool-box are still unsolved but
these are a topic of ongoing research.

References

1. S.Amarasinghe, J.Anderson, M.Lam, and C.Tseng, "The SUIF compiler for scal-
able parallel machines", in Proc. of the 7th SIAM Conf. on Parallel Proc. for
Scientific Computing, 1995.

2. U.Banerjee, R.Eigenmann, A,Nicolau, D.Padua, "Automatic program pa~allelisa-
tion", Proc. of the 1EEE, invited paper, Vol.81, No.2, Feb. 1993.

3. M.Bister, Y.Ta~ymans, J.Cornefis, "Automatic Segmentation of Cardiac MR Im-
ages", Computers in Cardiology, IEEE Computer Society Press, pp.215-218, 1989.

4. T-S.Chen, J-P.Sheu, "Communication-free data allocation techniques for paxal-
lefizing compilers on multicomputers', 1EEE T~ans. on Parallel and Distributed
Systems, Vol.5, No.9, pp.924-938, Sep.1994.

5. Y-Y.Chen, Y-C.Hsu, C-T.King, "MULTIPAR: behavioral partition for synthesiz-
ing multiprocessor architectures", IEEE Trans. on VLSI Systems, Vol.2, No.l,
pp.21-32, March 1994.

6. M.Cierniak, W.Li, "Unifying Data and Control Transformations for Distributed
Shared-Memory Machines", Proe. of the SIGPLA N'95 Conf. on Programming Lan-
guage Design and Implementation, La Jolla, pp.205-217, Feb. 1995.

225

7. A.Darte, T.Risset, Y.Robert, "Loop nest scheduling and transformations", in En-
vironments and Tools for Parallel Scientific Computing, J.J.Dongarra et al. (eds.),
Advances in Parallel Computing 6, North Holland, Amsterdam, pp.309-332, 1993.

8. H.De Man, F.Catthoor, G.Goossens, J.Vanhoof, J.Van Meerbergen, S.Note,
J.Huisken, "Architecture-driven synthesis techniques for VLSI implementation of
DSP algorithms", Proc. of the IEEE, special issue on "The future of computer-
aided Design", Vol.78, No.2, pp.319-335, Feb. 1990.

9. C.Eisenbeis, W.Jalby, D.Windheiser, F.Bodin, "A Strategy for Array Management
in Local Memory", Prac. of the ~th Workshop on Languages and Compilers for
Parallel Computing, Aug. 1991.

10. K.Konstantinides, R.Kaneshiro, J.Tani, "Task allocation and scheduling models
for multi-processor digital signal processing", IEEE Trans. on Acoustics, Speech
and Signal Processing, VoI.ASSP-38, No.12, pp.2151-2161, Dec. 1990.

11. D.Lilja, "The impact of parallel loop scheduling strategies on prefetching in a
shared memory multi-processor", IEEE Trans. on Parallel and Distributed Sys-
tems, Vol.5, No.6, pp.573-584, June 1994.

12. P.Lippens, J.van Meerbergen, W.Verhaegh, A.van der Weft, "Allocation of multi-
port memories for hierarchical data streams", Proc. IEEE Int. Conf. Comp. Aided
Design, Santa Clara CA, Nov. 1993.

13. K.McKinley, M.Hnll, T.Harvey, K.Kennedy, N.McIntosh, J.Oldham, M.Paleczny,
and G.Roth, "Experiences using the ParaScope editor: an interactive parallel pro-
gramming tool", in Sth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, San Diego, USA, May 1993.

14. L.Nachtergaele, F.Catthoor, F.Balasa, F.Franssen, E.De Greef, H.Samsom, H.De
Man, "Optimisation of memory organisation and hierarchy for decreased size and
power in video and image processing systems", Proc. Intnl. Workshop on Memory
Technology, Design and Testing, San Jose CA, pp.82-87, Aug. 1995.

15. C.Polychronopoulos, "Compiler optimizations for enhancing parallelism and their
impact on the architecture design", IEEE Trans. on Computers, Vol.37, No.8,
pp.991-1004, Aug. 1988.

16. L.Ramachandran, D.Gajski, V.Chaiyakul, "An algorithm for.~rray variable cluster-
ing", Proc. 5th ACM//IEEE Europ. Design and Test Conf., Paris, France, pp.262-
266, Feb. 1994.

17. M.Schwiegershausen, M.SchSnfeld and P.Pirsch, "Mapping complex image process-
ing algorithms onto heterogeneous multi-processors regarding architecture depen-
dent performance parameters", Intnl. Workshop on Algorithms and Parallel VLSI
Architectures, Leuven, Belgium, August 1994. Also in "Algorithms and Parallel
VLSI Architectures III" (eds. M.Moonen, F.Catthoor), Elsevier, 1995.

18. J.Vanhoof, I.Bolsens, H.De Man, "Compiling multi-dimensional data streams into
distributed DSP ASIC memory", Proc. IEEE Int. Conf. Comp. Aided Design,
Santa Clara CA, pp.272-275, Nov. 1991.

19. M.van Swaaij, F.Franssen, F.Catthoor, H.De Man, "Automating high-level control
flow transformations for DSP memory management", Proc. IEEE workshop on
VLSI signal processing, Napa Valley CA, Oct. 1992. Also in VLSI Signal Processing
V, K.Y~o, R.Jain, W.Przytula (eds.), IEEE Press, New York, pp.397-406, 1992.

20. M.Wolfe, U.Banerjee, "Data Dependence and its Application to Parallel Process-
ing", Int. J. of Parallel Programming, Vol. 16, No. 2, pp.137-178, 1987.

