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Abs t rac t .  Application studies in the domain of image and video pro- 
cessing indicate that between 50 and 80% of the area cost in (application- 
specific) architectures for multi-dimensional (M-D) signal processing is 
due to memory units. This is true for both single-processor and weakly 
parallel processor realizations. This paper has two main contributions. 
First, to reduce this dominant cost, we propose to address the system- 
level storage organization for the M-D signals as a first step in the overall 
methodology to map these applications. Secondly, we will demonstrate 
the usefulness of this novel approach based on a realistic image process- 
ing test-vehicle, namely a cavity detection algorithm. The novel design 
results for this relevant application are useful as such. 

1 Introduction and Related Work 

In multi-media applications and others that  make use of large multi-dimensional 
data  structures, a considerable amount  of memory is required. The ever increas- 
ing storage requirements in these applications make the memory cost usually 
one of the dominant contributions to the total  system cost. This is especially 
true for embedded systems [8, 12]. 

Up to now, only few hardware synthesis systems [12, 16, 18] t ry  to reduce the 
storage requirements for array-type data  structures, always focussed on single- 
processor realizations and with (severe) model limitations. Also in our own previ- 
ous work on ATOMIUM [14, 19], we have only focussed on single-processor stor- 
age, dealing with loop transformations, memory allocation and in-place storage 
reduction for complex M-D signal processing. 

Although many software compilers t ry  to come up with the best array layout 
in memory for optimal cache performance (see e.g. [6, 9]) they do not t ry  to 
directly reduce the storage requirements as memory is allocated based on the 
available variable declarations. However, in general, this can lead to a large 
over-allocation, compared to the maximal amount  of memory which is really 
needed over time. Moreover, the number of transfers to large memories is not 
fully minimized this way. Consequently, there is a loss in power consumption 
and overhead cycles. 

* This research was partly sponsored by the JESSI AC75 project of the EC 
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Fig. 1. Data transfer and storage exploration for data dominated systems 

To remedy this situation, the system-level memory management (SLMM) 
oriented methodology presented in this paper applies more aggressive loop and 
data flow transformations than previously done. These transformations are able 
to significantly reduce the storage requirements for statically allocated memory. 
Moreover, the previously applied compiler techniques tackle the parallelization 
and load balancing issues as the only key point so they perform these first in the 
overall methodology [1, 2, 4, 5, 13, 15, 20]. Typically, also regular loop scheduling 
[7] or irregular multi-processor scheduling [10, 11, 17] techniques are performed 
during or just after this stage. For the typical image processing system in Fig. 1, 
this means that all the subsystems are treated separately and each of these 
will be compiled in a locally optimized way onto the parallel processor. This 
strategy leads to a good parallel solution but unfortunately, it will typically 
give rise to a significant buffer overhead for the mismatch between the data 
produced and consumed in the different subsystems. To solve this, our approach 
first applies storage and transfer oriented optilnizations between the different 
systems. Initially, all the subsystems containing M-D processing are combined 
into one global specification model, and then optimized as a whole in terms of 
SLMM, prior to the other tasks. 

2 Problem Definit ion 

As indicated, in our approach we will first perform the storage and transfer 
optimization, before other optimizations or parallel processor mapping stages. 
The input will be a control/data flow-graph CDFG model where all data depen- 
dencies have been made explicit to allow formal compile-time analysis, i.e. cor- 
responding to a single-assignment description. 

We also require that the subsystems are not treated separately but as a whole. 
For the typical image processing system in Fig. 1, this means that initially, all the 
subsystems containing M-D processing are combined into one CDFG "bubble", 
specified in single assignment form wherever possible and then optimized as a 
whole in terms of SLMM. 

The SLMM stages internally can then be applied in terms of loop/data flow 
transformations, memory hierarchy and allocation decisions, and in-place map- 
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ping, largely similar to the single-processor case [14]. These stages treat the 
data-path as if it is one global data-path (Fig. 2). 

The output of the SLMM stage will be a transformed optimized CDFG with 
restrictions on control and data flow, and a preliminary distributed background 
memory organization. These two descriptions can then be used as input for t h e  
subsequent processor partitioning and load balancing stage and from there to 
the final processor HW synthesis or SW compilation stages, dealt with by more 
traditional techniques. 

If possible, the partitioning has to be done in a way that is not cutting over 
process communication links which involve M-D streams produced and consumed 
differently u so only scalar streams 3 are cut. If this is not feasible, the two 
communicating subprocesses have to be connected by a memory subsystem which 
is shared between the corresponding processors. 

More details and formalization of the tasks in this methodology will be dis- 
cussed in future papers. Here, due to lack of space we will only illustrate our 
approach in an intuitive way on a typical test-vehicle. 

3 I l l u s t r a t i o n  o n  a R e a l i s t i c  D e s i g n :  C a v i t y  D e t e c t i o n  

Cavity (or edge) detection is an important step in many (in particular medical) 
image processing applications [3]. This algorithm mainly consists of a sequence 
of four distinct steps, each of which computes new matrix information from the 
output of the previous step. So, these steps can be seen as separate processes. 
A classical approach to parallelize this irregular algorithm on a weakly parallel 
processor [10, 11, 17] would be to assign each of these steps to its own processor, 
and to pipeline the processing in a coarse-scale way: while processor 1 is working 
on frame x, processor 2 is working on frame x-l, and so on. This means, however, 
that we need an enormous amount of memory: one image frame per processor, 
plus one for reading in a new frame (as in Fig. 1). All these frames have to be 
stored in background memory, and have to be transferred between a processor 
and a memory in each step. So this is unacceptable from the viewpoint of both 
storage area and overall power. 

The proposed SLMM approach can significantly reduce the area and power 
requirements of this application. To illustrate this, we will first consider the 

Note that a scalar signal could also be an initially M-D signal which has been "pro- 
jected" into a sequential scalar communication 
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function GaussBlur (image_in: W[N][N])image_out: W[N][N] = 
begin ]/Compute horizontal weighted average 

(x : 0 .. N-l):: (y : 0 .. N-l):: begin 
tmpl[x][y][0]=0; (k : -GB .. GB):: 

tmpl[x][y][k+GB+l] = tmpl[x][y][k+GB] + Gauss[k]*image_in[x+k][y]; 
end; 
{ Compute vertical weighted average (analogous) } 

end; 

function ComputeEdges (image_in: W[N][N])image_out: W[N][N] = 
{ Replace every pixel with the maximum of difference with its neighbors } 

function Reverse (image_in : WIN]IN])image_out: W[N][N] = 
{ Search for the maximum value that occurs : maxval } 
{ Subtract every pixelvalue from this maximum value } 

function DetectRoots (image.in : W[N][N])image_out: bool[N][N] = 
{ image_out[x][y] is true if no neighbors are bigger than image_in[x][y] } 

function LabelRoots (image_in : bool[N][N]) image_out : int[N][N] = 
{ Analogous, but only looks at neighbors on line y-1 (not y+l) .  } 

Fig.  3. Initial description of the cavity detection algorithm 

mapping of the algorithm on one virtual processor, as illustrated in Fig. 2. Then 
we will look at some ways to parallelize the result without sacrificing storage 
and transfer overhead for improved throughput or good load balancing. 

The main functionality of the algorithm as specified by the designers is given 
in Fig. 3. The four steps are the functions GaussBlur, ComputeEdges, Detect- 
Roots and LabelRoots. There is another function~ Reverse, which is executed 
between ComputeEdges and DetectRoots, but we: will show that  this function 
can be removed as part of a system-level data-flow transformation. We will as- 
sume that  the image enters and leaves the system in the conventional row-wise 
fashion. Also other formats exhibit similar optimization possibilities however. 

3.1 O p t i m i z e d  M e m o r y  O r g a n i z a t i o n  on  O n e  V i r t u a l  P roces so r  

In the initial description of the algorithm, each step is applied to the image as 
a whole. From the viewpoint of memory management, this is a bad solution, 
as it means that  in every step, the whole image nmst be read from background 
memory and written back to it. A better solution would be to read one row of 
the image, and apply all steps of the algorithm to this row directly. However, 
this is not possible as such: for example, to apply ComputeEdges to line y, 
GaussBlur must already have been applied to line y + l .  Furthermore, some local 
transformations are needed. These issues will be discussed next. 

Loca l  O p t i m i z a t i o n  in  G a u s s B l u r .  In the first part of GaussBlur, every 
pixel is replaced by a weighted average of its horizontal neighbors. In the initial 
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Fig. 4. Shaded boxes indicate computations. 

description, this is executed in a column-wise fashion. So, for every pixel, all 
its horizontal neighbors have to be read from background memory, or we need 
a foreground buffer of 2*GB+I columns (GB is typically 1 or 2). Moreover, 
because the image enters the system row-wise, we need a background memory 
in which the next incoming frame can be stored while we are processing the 
previous one. If we interchange the x and y loops, there is much better data 
locality: we only need a foreground buffer of 2*GB+I pixels. Also we don't need 
an extra background memory, as the processor can now accept the rows of the 
image as they enter the system. 

Now consider the second part of GaussBlur, where a weighted average of the 
vertical neighbors of every pixel is computed. We can optimize memory usage 
in the same manner as above, in which case we have to work in a column-wise 
fashion this time. As the output of the previous step is row-wise, this means 
that we have to write the whole image to background memory between the two 
steps. So, here it will be better to continue to work row-wise, which means we 
only need a foreground buffer of 2*GB+I rows. 

S imi la r  Local  T rans f o rm a t i ons  can be applied to the other functions. For 
example, in ComputeEdges, we only need the eight direct neighbors of every 
pixel to compute its new value. So to compute the values of line y, we need the 
pixels of lines y-l,  y and y+l .  This means that a buffer of three lines is sufficient 
to avoid extensive data transfers from background memory to data-path. In the 
second column of Table 1, the results of these local transformations are shown. 

G loba l  T r a n s f o r m a t i o n  o f  G a u s s B l u r  a n d  C o m p u t e E d g e s .  To perform 
ComputeEdges on line y, we need the pixels of lines y-1, y and y+ 1. So instead of 
first performing GaussBlur on the whole image, ComputeEdges can be applied 
to line y-1 already when GaussBlur has just been applied to line y. In this way, 
we don't need to store the intermediate image in a background memory between 
these two functions - -  at least if we use three extra foreground line buffers, as 
depicted in Fig. 4. 

To accomplish this, we have to join the functions GaussBlur and Com- 
puteEdges. Then we can apply a combined loop folding and merging transforma- 
tion to the y-loop. A similar global transformation can be applied to DetectRoots 
and LabelRoots, but not to Reverse, as explained in the next paragraph. The 
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Table 1. Overview of the reduction of background memories and data transfers, 
accomplished by the different system-level transformations, and the amount of 
foreground buffers needed. BG=Background, FG=Foreground, 1 BG memory 
means 1 BG memory for a whole image frame. 

Initial After local y-loop After data- x-loop 
algo trafo folded flow trafo folded 

BG reads (*N ~) 4'GB+26 6 1 0 0 
BG writes (*N 2) 5 4 1 0 0 

FG line buffers 0 2*GB+I 2*GB+4 2*GB+9 2*GB+5 

BG memories 3 1 1 0 0 

reduction of the number of data transfers as a result of these global transforma- 
tions, is shown in the third column of Table 1. 

The  Funct ion  Reverse.  The technique described above cannot be applied to 
Reverse, because in this function the maximum value that occurs in the whole 
image is first computed. If we only consider the number of operations to be 
performed, the computation of the maximum represents only a small fraction of 
the total arithmetic effort of the algorithm. However, if we look at the number 
of transfers and the amount of background memory needed, this computation 
means that the whole image has to pass through the processor, before the next 
step of the algorithm can be performed. So we have a huge amount of extra 
transfers, and we need an extra background memory for one image. Prom the 
viewpoint of memory management, the computation of a maximum is a real 
bottle-neck, that cannot be directly circumvented.: 

In this case however, the function Reverse is a direct translation from an 
original system-level description of the algorithm, where specific functions have 
been reused. It can be avoided by adapting the next step of the algorithm (De- 
tectRoots) by means of a data flow transformation. Instead of image_out Ix] [y] = 
i f ( p  > {q}), where p,q are pixel elements produced by Reverse, we can write 
image_out = i f ( - p  < {-q}) or image_out = i f ( c - p  < { c -  q}), where 
c = mazva l  is a constant. So instead of performing the Reverse function and 
implementing the original DetectRoots, we will omit the Reverse function and 
implement instead: 

{ image_out[x][y] is true if no neighbors are smaller than image_in[x][y] } 

In this way the storage and access bottle-neck is totally avoided. 

The  Funct ions  De tec tRoo t s  and  Labe lRoots .  Because the DetectRoots 
and LabelRoots steps are similar to ComputeEdges, we can now apply the same 
technique as above. Assuming that GB=I,  we now need a total of 11 line buffers. 
Clearly, the amount of data transfers has been further reduced. See Table 1. 
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Fig. 5. Flow of data through buffers 

F u r t h e r  Opt imiza t ions .  By applying a loop folding transformation to the x- 
loop (as we did to the y-loop), another 4 buffers can be optimized away, which 
brings us to 7 line buffers. See Table 1. 

3.2 Para l le l iza t ion  of  the  s torage and  t ransfer  op t imized  so lu t ion  

In this section we will look at some ways to parallelize the optimized algorithm. 
We will assume that a speedup of about 4 is required, which corresponds well 
with the typically available amount of parallelism in the current generation of 
multi-media processors like the C80 of TI and the TriMedia of Philips. 

I r r egu l a r  Coarse-gra ln  Pipel ining.  A first method to parallelize the algo- 
rithm has already been mentioned in the beginning of this section: coarse-grain 
pipelining (at the level of the image frames). This can work well for load bal- 
ancing on a four-processor system, but is clearly an unacceptable method if we 
have efficient memory management in mind. 

Regu l a r  D a t a  Paral le l ism.  A second parallelization method (as suggested 
more by the data partitioning methods supported in [1, 2, 13", 20]) is to distribute 
the image itself over the four processors. Because the image enters row-wise, we 
have to choose a column-wise partitioning to keep the processors busy. In this 
way, we will need 7 line-buffers per processor, or 28 in total, but their length 
is only a quarter of a line. The flow of data through these 28 buffers is shown 
in Fig. 5. This is still much more expensive than just 7 simple buffers, which 
are standard components that can be realized in a very compact way. Moreover 
idle cycles will have to be introduced with this solution (this can be overcome by 
replacing the FIFO buffers with SRAM buffers, which are much more expensive). 

F ine -g ra in  Pipel in ing.  A third way to parallelize this algorithm consists in 
assigning each of the steps of the algorithm to a different processor. Still assum- 
ing that GB- 'I ,  processor one has a buffer of two lines (y-1 and y). Line y + l  
enters the processor as a scalar stream; synchronously the GaussBlur-step can 
be performed on line y, the result of which can be sent to the second processor 
as a scalar stream. This one can concurrently (and synchronously) apply the 
ComputeEdges step to line y-1 and so on. In this way we only need a buffer of 
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two lines per processor (and one for the last processor), or 7 in total! This is 
the same amount we needed for the mono-processor case. So we have achieved 
what we were looking for: improved performance without sacrificing storage and 
transfer overhead (which would translate in area and power overhead). 

Note that the load balance will be less optimal than in the data parallel solu- 
tion. In many cases, the parallelization research community focuses on avoiding 
idle cycles and achieving a better load balance. For data dominated designs (es- 
pecially embedded ones) it is however at least as important to look at the data 
storage and transfer organization. If we can avoid a buffer of 32 Kbit by using 
an extra processor, this can be advantageous even is this processor would be 
idle 90% of the time (which would also mean we have a very bad load balance), 
because the cost of this extra processor in terms of area and power is usually 
less than the cost of a 32Kbit on-chip memory. 

4 Conclusion 

In this paper, a summary has been made of the main storage related issues to be 
resolved in the system-level mapping context of data-dominated signal process- 
ing applications on weakly parallel processors. It has been motivated why the 
novel SLMM methodology proposed here has a good chance to solve many of 
the efficiency problems which arise when mapping storage dominated image and 
video processing applications to embedded parallel processors. The feasibility of 
this approach has been substantiated on a realistic image processing applica- 
tion. Moreover, the requirements on the context of this SLMM work have been 
addressed, with emphasis on the interaction with the other system-level issues. 
Several aspects about the internals of the SLMM tool-box are still unsolved but 
these are a topic of ongoing research. 
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