
A d a p t i v e Para l le l i sm in the B u l k - S y n c h r o n o u s
Paral le l M o d e l *

Mohan V. Nibhanupudi and Boleslaw K. Szymanski

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, NY, USA 12180-3590

Abstract. The Bulk-Synchronous Parallel (BSP) model is a universal
abstraction of parallel computation that can be used to design portable
parallel software. Advances in processor architecture and network com-
munication enable clusters of workstations to be used as parallel comput-
ers. This paper focuses on using the idle computing power of a network of
workstations to run parallel programs. The transient nature of the pro-
cessors causes straightforward execution of synchronous BSP programs
to perform poorly in such an environment. In this paper, we propose a
scheme, based on the eager replication of state data and lazy replication
of processes, that allows BSP programs to run efficiently on transient
processors. The scheme is integrated into the Oxford BSP library.

Keywords: BSP Model, Networks of Workstations, Adaptive Parallel Computing

1 I n t r o d u c t i o n

The Bulk-Synchronous Parallel (BSP) model [12] is a universal abstract ion of
parallel computat ion which can be used to design portable parallel software. Ad-
vances in micro processor architecture and data communication allow distributed
m e m o r y machines and networked workstations to deliver high performance for
parallel applications. The focus of this paper is on a network of workstations
viewed as a BSP computer. However, unlike the major i ty of the research on high
performance distributed computing, we are interested in utilizing idle computing
power of the workstations without disrupting services for regular users (owners)
of the machines. The problem is challenging for highly synchronous applications
because the performance is limited by the progress of the slowest or least avail-
able machine. Another complication is the unpredictability of machine load, i.e.
each currently free workstation can suddenly become unavailable for a long time.

There have been several systems tha t a t t empt to make use of idle t ime on
workstations. Typically (see [2]), such systems avoid degrading the performance
for the owner of the machine by requiring tha t the background computat ion be

* This work was partially supported by NSF Grams CCR-9216053 and CCR-
9527151. The content does not necessarily reflect the position or policy of the U.S.
Government.

312

suspended when owner's activity is detected. The background computation is
resumed when the owner's activity ends and the processor is idle. Since these
processors are available for use only when they are idle and not available at other
times, they are referred to as "transient" processors [4]. Consequently, we treat
a change of the workstation status from free to unavailable as a transient failure.
Another assumption of our approach is that the frequency of synchronization of
parallel computation is high compared with the average available/nonavailable
t imes of a workstation.

In this paper, we propose extensions to the Oxford BSP Library [6, 7] that
allow for transparent recovery from transient processor failures in a network
of workstations using dynamic replication of computation state, lazy process
replication and process migration. The resulting system supports parallel com-
putation with the level of parallelism changing in response to the changes in
the number of available workstations. We refer to this kind of computation as
adaptively parallel.

2 P a r a l l e l C o m p u t a t i o n o n a N e t w o r k o f T r a n s i e n t

P r o c e s s o r s u s i n g t h e B S P M o d e l

In the BSP model the computation consists of a sequence of supersteps. In each
superstep, the processors perform some local computation and initiate commu-
nication to other processors. All the processors synchronize at the end of each
superstep. Consequently, if a participating processor becomes unavailable while
executing a superstep, the progress of the entire program will be stalled.

In [4], Kleinrock et. al. found the probability density of a program's finishing
time on multiple processors in which duration of available and nonavailable peri-
ods are independent and identically distributed random variables from a general
distribution assuming long duration programs (that execute for several avail-
able periods) composed of many independent tasks. Hence, each processor can
proceed independently of the others. As a result, the average processing time
of the program with execution time T on a dedicated workstation is equal to
T . ~ on p nondedicated workstations, where ta, tn are average available and
P Sa
nonavailable times.

The impact of transient failures on tightly synchronized parallel programs
with relatively small amount of computation between synchronizations is much
more severe. In [10], Nibhanupudi and Szymanski analyze the execution time of
a BSP program with relatively short supersteps on a network of transient proces-
sors for the special case of exponentially distributed available and nonavallable
times. Many scientific applications such as the plasma simulation [9] that require
frequent communication and synchronization among the component processes
belong to this category. The results of the analysis in [10] are summarized be-
low. Consider a BSP computation with the average inter-synchronization times
measured on a single dedicated workstation equal to T << ta (and also T << tn).
Since all the processors synchronize at the end of the computation, the finishing
time of the step is the maximum of the finishing times of the computation on

313

individual processors. The mean finishing time of the computation step on p
transient processors is approximately T + T ~ . We can see from the above ex-
pression that the mean finishing time or-the parallel computation on p processors
is worse than on a single processor whenever tn > t~.

The delay caused by nonavailable workstations can be decreased by repli-
cating the component processes on more than one processor, thereby increasing
the chances of timely delivery of the results of each process. Replication of the
component processes is expensive because the computations done by all but one
of the replicated processes are discarded. Instead, in this paper we take the ap-
proach of lazy (i.e. invoked when needed) replication of the computations. Tha t
is, when a transient processor fails (becomes unavailable), then its computat ion
is performed by an available processor and computations are replicated only
when required by the failure of a processor. This approach saves computation
but sequentializes failure recovery because the processor running a replica must
finish its regular computation first.

Our approach to adaptive parallelism is based on viewing the unavailabil-
ity of a host machine as a transient failure; the effect of the transient failure
is to delay the parallel computation. Our approach deals with transient failures
through data replication[3] of computation state and time redundanc9 2 [8] of com-
putations. In distributed systems, data objects are replicated on multiple nodes
to increase the availability of the data and thereby increase the resiliency to
failures. Time redundancy is used to deal with the effects of temporary failures.
In our approach, replication of computation state is done in order to allow for
repetition of computations of a failed process, should a host processor become
unavailable. This view of a transient failure includes in its scope any real failure
of the host machine. Thus our scheme can recover from real failures of host ma-
chines tha t occur after the data replication has completed successfully. However,
we are mainly concerned about the adaptability of the parallel application to
the changing computing environment to maintain acceptable performance on a
nondedicated network of workstations. To provide fault-tolerance to hardware
and software failures, the presented mechanism would have to be supplemented
with a recovery system based on periodic checkpointing of the component pro-
cesses.

2.1 Adaptive Parallelism through Replication and Migration

In our scheme for lazy replication of computations, each process is ready to
act as a backup for one or more of its peers. This is achieved by eager repli-
cation of the computation state of a component process on one or more of its
peers. In the event of the failure of a component process, one of the backup
processes can take over and complete the computations of the failed process.
This is further discussed in section 3. The superstep is complete when all the

2 Time redundancy refers to the repetition of a computation or communication action
in the domain of time.

314

computations are successfully completed by either the respective component pro-
cesses or their back-ups. However, for subsequent supersteps, it is desirable to
remove the failed process from the parallel computation and avoid replication
which creates load imbalance between processors. A scheme to exploit adaptive
parallelism, therefore, should provide for migrating processes across machines.
This approach requires no additional resources, since no processes are replicated
and replication is lazy in that computations are repeated only when a processor
has failed or is delayed. The only investment is data replication, main cost of
which is the communication needed to send the state of each subcomputation to
peer processes.

2.2 Extens ions to the Oxford B S P Library

The above described scheme of using lazy replication and migration to support
adaptive parallelism has been integrated into the Oxford BSP library [6, 7].
It implements a simplified version of the Bulk-Synchronous Parallel model [12]
introduced by Leslie Valiant. It is simple, yet robust and was successfully used
by us for implementing plasma simulation on a network of workstations.

The extensions to the Oxford BSP library are introduced in two layers. The
first layer implements our lazy replication and migration scheme. This layer is
integrated into the BSP library. The second layer implements a small set of
primitives that can be used by the programmer to specify the data structures
that constitute the computation state.

The extensions in the first layer support the following new features.

1. The processes are dynamic: processes can be terminated; new processes can
be created and enter the computation; processes can migrate from one pro-
cessor to another.

2. At synchronization one process can be substituted by another so dynamic
work sharing among the component processes is possible.

3. The extended library implements our protocol for lazy replication of com-
putations and migration of the failed process to an available processor.

3 L a z y R e p l i c a t i o n a n d M i g r a t i o n in t h e B S P m o d e l

Lazy replication alleviates the impact of transient processor failures (unavail-
ability) by ensuring that computation will proceed in spite of the failure. The
tolerance of the system to transient failures depends on the degree of replica-
tion. We refer to the degree of replication as replication level denoted by R.
A system with a replication level of R can survive the failure of R successive
component processes. Lazy replication is implemented as follows. The partici-
pating processes, except process 0, are organized in to a logical ring, thereby
establishing a total order between themselves. Process 0 is assumed to run on a
host owned by the user running adaptive parallel computation which makes it
immune to transient failures. At the beginning of every superstep, each process

3 1 5

communicates the state of its computations in the current superstep to R of
its successors, where R is a desired reliability level, discussed in the following
paragraph. When the process finishes its computations, it sends a completion
message to its R successors. It then checks if it has received completion messages
from its R predecessors. After a short t imeout period, lack of such a message
is interpreted as the failure of the predecessor. The process then creates a new
process for each failed predecessors. Such newly created process first restores the
state of the failed process, then executes its computations and fin~Jly performs
synchronization on its behalf. In general, such newly created process assumes the
identity of the predecessor and can continue participating in the parallel com-
putation as a legitimate member. However, for the sake of better performance,
this renewed process is migrated to a new host if one is available.

We refer to the data to be processed (data comprising the computation state)
as the primary data and its replica at a successor process as the secondary data.
Figure 1 illustrates the working of the replication scheme for a replication level
of one.

Iwo =ion I

Sync(O)

f "6;/"i [~-]..i
I wo~'=ion I

S y n e (1)

~ F i n i s h T a s k (1) ~

STEP 2

~ ' ~ . . i ~ E)'I] ~ D ' ~ . i i 521 1 ~ 3 " i ,'JPrlmary Data Secondary Data

Iwo s t,on I IworkS'a'ion I
o.

(" Process 2")

i Process
L....,D~

Transient
Failure I "u

lWor S'a"on I I Wo Stat'on I

Sync(3) Sync(4)
FinishTask(3) FinishTask(4) ---=-

" - . I "r~ a I
(processing

I " I aborted)

Sync(2)

[--1 I I

Fig. 1. The Replication Scheme for a replication level of 1.

Our lazy replication scheme is based on the following assumptions. There
will be no node failures during the initial stage of the superstep when the pro-
cess communicates its state to the successors. This is a reasonable assumption,

316

because we require that the computation will not be interrupted by the owner's
processes only during the period when communication is initiated, which is quite
short. Additionally, we assume a reliable network, so there will be no network
failures; a message that has been sent by a node will be received at the desti-
nation node. Further, we assume (for the prototype under implementation) that
supersteps that make use of replication contain computation only. This is not
overly restrictive, because in the BSP model, data communicated in a superstep
are guaranteed to be received at the receiving process only at the end of the su-
perstep and can only be used in the next superstep. Hence a superstep involving
both computation and communication can always be split into a computation
superstep and a communication superstep. We intend to relax this restriction in
the future versions.

The BSP approach provides a very general framework[5] and most applica-
tions can be represented as BSP computations. Our scheme for adaptive paral-
lelism in the BSP approach is based on replicating the computation state and
repeating the computation step in the event of failure of the component process.
Hence the scheme is applicable to computation supersteps that transform the
computation state of the process without any side effects. Since the failed com-
putations are repeated by another process on a possibly different processor, we
require that the computation superstep not include operations with side effects
such as output, memory allocation, etc.

4 P l a s m a Simulation

We have implemented the lazy replication scheme in the plasma simulation [9].
The plasma Particle In Cell simulation model [1] integrates in time the tra-
jectories of millions of charged particles in their self-consistent electromagnetic
fields. Particles can be located anywhere in the spatial domain; however, the
field quantities are calculated on a fixed grid. In the General Concurrent Particle
in Cell (GCPIC) Algorithm [11], both the particles and the field axe partitioned
among the processors. In the replicated grid version of the plasma simulation [9],
the simulation space is replicated on each of the processors. The particles are
evenly distributed among processors in the primary decomposition, which makes
advancing particle positions in space and computing their velocities efficient.
Replicating the simulation space (grid) on each processor avoids frequent com-
munication between processors otherwise needed because of interactions between
particles on one processor with a portion of the grid on another processor.

5 Implementation and Results

We axe implementing the described scheme for adaptive parallelism in layers.
The first layer consists of a set of primitives implemented in the Oxford BSP
library. The replication scheme builds upon this layer and is embedded into the
bspsstep and bspsstep_end calls that delimit a superstep. This layer implements

317

the replication scheme transparently to the user. However, the replication scheme
requires knowledge of which data structures constitute the process state for any
superstep. The proposed second layer implements the primitives which the user
can use to specify these structures. We are thinking of ways to extract this
information from the user program unobtrusively.

We have currently implemented a prototype that implements our lazy replica-
tion scheme. For the sake of quick implementation, the prototype is embedded in
the user program. We have also made some simplifying assumptions. For exam-
ple, in the prototype we have assumed a replication level of one. As mentioned in
section 3, our prototype requires that a superstep making use of replication con-
tain computation only. Further, we have currently implemented a simple scheme
to choose a host machine to which the new process will migrate using the mi-
gration scheme of Condor [2] for this purpose. Apart from the use as a proof of
concept, this implementation will help us in understanding the issues that arise
when the replication scheme is available in a BSP library and in refining the set
of needed primitives.

We are testing our replication and migration scheme using simulated tran-
sient processors with exponential available and non-available periods. We have
used mean available and mean nonavailable periods of 30 minutes and 20 min-
utes respectively. Our preliminary results were obtained using a plasma simula-
tion with 300,000 particles and a level of parallelism of 4. For simulations using
our adaptive replication and migration scheme, we assumed an infinite pool of
processors, so that an available processor, to which a failed process can be mi-
grated, is always available and therefore the initial level of parallelism can be
maintained throughout. The execution time on a single dedicated processor is
5400 seconds under light load conditions and 9200 seconds under heavy load
conditions. The execution time using our replication and migration scheme us-
ing idle machines (equally distributed during light and heavy load conditions)
ranged from 5100 seconds during light load conditions to 9400 seconds during
heavy load conditions, with an average of 6400 seconds. The execution time
of the parallel simulation without using our scheme is significantly larger. Our
measurements indicate that a significant amount of computation was performed
using idle workstations. The minimum execution time using the scheme is less
than the minimum execution time using a single dedicated processor by about
5%. We expect the performance of the scheme to improve for large problem
sizes using a higher level of parallelism. For significantly large problems that do
not fit into the main memory of a single processor, one will be required to use
parallelism. We intend to measure the performance of the replication scheme for
various values of such parameters as the number of processors, mean values of
the available and nonavailable periods, etc.

6 C o n c l u s i o n

We have proposed and implemented a lazy replication and migration scheme
that allows a parallel program running on a network of transient processors to

318

recover from the transient failure (unavailability) of processors. We have pro-
posed extensions to the Oxford BSP Library to implement the scheme. The
scheme is lazy since replication of computat ion is done only when required. The
only investment is tha t of sending the state of the computat ion to a peer pro-
cess. The proposed BSP library extensions implement the scheme transparent ly
to the BSP user. We axe exploring ways to extract the state information from
the user through the use of annotations.

References

1. C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation. The
Adam Hilger Series on Plasma Physics. Adam Hilger, New York, 1991.

2. A. Bricker, M. Litzkow, and M. Livny. Condor Technical Summary. Technical
Report CS-TR-92-1069, Computer Sciences Department, University of Wisconsin-
Madison, Jan 1992.

3. Pankaj Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, Englewood
Cliffs, New Jersey 07632, 1994.

4. L. Kleinrock and W.Korfhage. Collecting Unused Processing Capacity: An Anal-
ysis of Transient Distributed Systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 4(5):535-546, May 1993.

5. W F McColl. BSP Programming. In G Blelloch, M Chandy, and S Jagannathan,
editors, Proe. DIMA CS Workshop on Specification of Parallel Algorithms, Prince-
ton, May 94. American Mathematical Society.

6. Richard Miller. A Library for Bulk-synchronous Parallel Programming. In British
Computer Society Parallel Processing Specialist Group workshop on General Pur-
pose Parallel Computing, December 1993.

7. Richard Miller and Joy Reed. The Oxford BSP Library Users' Guide, version 1.0.
Technical report, Oxford Parallel, 1993.

8. Sape Mullender. Distributed Systems. ACM Press Frontier Series. ACM Press,
New York, 2rid edition, 1993.

9. M. V. Nibhanupudi, C. D. Norton, and B. K. Szymanski. Plasma Simulation On
Networks Of Workstations Using The Bulk-Synchronous Parallel Model. In Pro-
ceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA '95), pages 13-22, Athens, Georgia, Novem-
ber 3-4, 1995.

10. M. V. Nibhanupudi and B. K. Szymanski. Efficiency Of Parallel Computation
Replication On A Network Of Transient Processors. Submitted to Eighth IEEE
Symposium on Parallel and Distributed Processing to be held in October 1996.

11. C. D. Norton, B. K. Szymanski, and V. K. Decyk. Object Oriented Parallel Com-
putation for Plasma PIC Simulation. Communications of the ACM, 38(10), Octo-
ber 1995.

12. Leslie G. Valiant. A Bridging Model for Parallel Computation. :Communications
of the ACM, 33(8):103-111, August 1990.

