
A RISC Approach to Weak Cache Coherence

J. Risau*, A. Mikschl, W. Damm

Carl yon Ossietzky Universits Oldenburg, FB 10 Abteilung Rechnerarchitektur,
AmmerlKnder Heerstrasse 114-118, D-26129 Oldenburg, Germany

A b s t r a c t . Data used by parallel programs can be divided into classes,
based on how threads access it. For different classes of data different
coherence mechanisms might be optimal.
This paper presents four primitives designed for use in a shared memory
multiprocessor system, where each processor has its private cache. Using
these primitives, programmers can implement those coherence models
that are best suited to their applications. The paper gives a description
of the primitives and some implementation details.

1 I n t r o d u c t i o n

A simple and intuitive memory model for shared memory multiprocessors is
that of sequential consistency ([Lam79]). However, this model severely restricts
the use of many optimization techniques in multiprocessor systems ([AH90]).
Weak cache coherence models (see e.g. [Mos93] for an overview) often provide
a restricted form of sequential consistency, namely only at certain points in
t ime (synchronization points, e.g. in [BH90]), only for a subset of memory ad-
dresses (e.g. synchronization variables, [DSBS8]) or only if tasks adhere to certain
conditions ([AH90]), thereby allowing some optimization to be used. However,
sequential consistency is not the only feasible memory model.

Many programs (tasks) are written to produce input determined results 2. To
do so, parallel threads of such a task compute some values, possibly using local
variables, input data and values computed previously by other threads. They
then assign some of these values to shared variables and finally signal that they
have done so (e.g. they synchronize, using flags, semaphores, barriers and the
like). Synchronizing allows other threads to use the values just computed for
their own computation.

Data can therefore be (at least) divided into shared, private (local variables)
and data used to synchronize threads. For different classes different coherence
mechanisms might be optimal ([CBZ91]). However, hardware can usually not
distinguish between these classes.

* email: Juergen.Risau@informatik.tmi-oldenburg.de
2 We restrict our discussion to this class of tasks. Other classes, like nondetermistic

algorithms (e.g. chaotic algorithms) or tasks that don't relay on accurate, up to date
data (e.g. some load balancing algorithms), are omitted for space reasons, but they,
too, can be implemented using our primitives.

454

To adhere to these observations, threads should be given means to synchro-
nize and choose which data they want to keep coherent. Following the RISC
approach to provide primitives rather than solutions, we propose four instruc-
tions that were designed for a shared memory multiprocessor with private caches
per processor. Using these instructions, threads can lock memory addresses and
control some aspects of caching. The primitives can be combined to implement
high level language synchronization primitives and coherence schemes.

The paper is organized as follows. In section 2 we present the new primitives.
Section 3 gives implementation hints and section 4 shows further work.

2 T h e P r i m i t i v e s

We assume a shared memory multiprocessor where each processor has a private
cache. Caches implement a write back strategy. S T O R E instructions do not cause
any kind of coherence action, but merely write the value in the local cache. We
propose the following new instructions:

- L O C K address
This instructions locks the specified address if it was not already locked. If
it was, then the instruction is only completed if address becomes unlocked.

- UNLOCK address
The specified address becomes unlocked.

- C O P Y _ B A C K node, address, nr_of_addresses
This instruction affects all lines in the cache of processor node contain-
ing data with addresses between (and including) address and address +
nr_of_addresses -1. All dirty words, that is words that were written by the
processor, from these lines are written back to main memory. Special values
for node are o w n and all. A special value for nr_of_addresses is all, which
affects all lines from the address space of the task issuing this instruction.

- R E P L A C E node, address, nr_of_addresses
This instruction behaves exactly like C O P Y - B A C K with the exception that
lines are additionally invalidated (removed from the cache).
Essentially L O C K and UNLOCK serve as synchronization primitives. Imple-

menting a binary semaphore is straightforward, since at most one thread can
lock a given memory address at any time. General semaphores and other forms
of synchronization can be implemented in a obvious way.

R E P L A C E and COP Y_BA CK are used to make data written by a processor
visible to other processors. Threads can use these instructions to copy their
results back to main memory and invalidate the corresponding lines in the caches
of the processors running threads that are to read the results.

Since S T O R E actions do not cause any coherence actions, multiple proces-
sors can modify a copy of the same line in their caches. This usually happens
because either threads don't synchronize or false sharing occurs. The problem
of false sharing is solved by specifying C O P Y _ B A C K and R E P L A C E as is done
above, vis. that they write only dirty words to main memory (if a line is written
back due to the replacement policy of the cache, only it's dirty words must be

455

actually written, too). If threads write to the same word of the same line without
synchronizing, it is undefined which word will be in main memory after the lines
have been written. This usually is a result of a programming error 3 that would
occur in sequentially consistent systems, too.

3 I m p l e m e n t a t i o n

The primitives presented in the last section have been implemented in a VHDL
model of the WAMCOT-Architecture. WAMCOT is a shared memory NUMA
architecture, with an optical bus ([AG92]), multithreaded processors ([AD96])
and a weak cache coherence protocol based on these Primitives. The VHDL
model showed the feasibility of the protocol but did not lend itself very well to a
simulation with real benchmarks. Toy benchmarks yielded a processor utilization
of up to 83%, which encourages us to further pursue our approach. Due to lack of
performance results with real applications, we won't describe the implementation
in detail here, but merely discuss some important aspects and costs.

To keep book about which addresses are locked, the memory controller of an
architecture implementing our primitives must be equipped with a lock table.
This data structure contains one bit for each lockable data item, that is, one bit
per word in main memory. Implementations can of cause decide to make only
a small amount of main memory lockable and leave it to the compiler or run
time system to map a portion of this into the address space of each task. We
choose a different approach and implemented one lock bit per so many words as
are in a cache line. This implies that a thread that locks an address in fact locks
the entire line containing that address. Since threads do usually not know which
addresses are in the same line, a thread trying to lock two addresses from the
same line will produce a deadlock. In our implementation, threads are therefore
only allowed to lock at most one address at any time. Since threads can agree
to exclusive access to any number of addresses by locking one of them, this is
not a severe restriction. Assuming 32 bits per word and 8 words per line, our
implementation requires 0.4% additionally memory to accommodate the lock
table.

We have already mentioned, that an implementation of the primitives re-
quires one dirty bit per word in a cache line. Apart from these, only 3 bits are
needed for the status of each line. One is a valid bit which shows whether the
words in the line contain valid data. The second is the request bit which is re-
quired due to the multithreading ability of the processor. The third is called lock
bit and is an optimization to reduce bus traffic. Whenever a processor issues a
L O C I (instruction on an address that is already locked, the lock bit in the cache
is set. If the processor tries to lock the address again, no access to the lock table
is needed, because the information that the line is locked is already in the cache.
An U N L O C K causes the memory controller to send invalidation messages to all
caches, thereby clearing the lock bits, too. If the lock bit is not set, the state of

3 in input determined tasks. Other classes of tasks might make use of this behavior.

456

the corresponding bit in the lock table is not known and so the processor must
access main memory.

Order restrictions between instructions are kept to a minimum in this proto-
col: S T O R E s must have been performed (the value must be written in the cache)
before either COPY-BACh" or R E P L A C E can perform. C O P Y _ B A C K and RE-
P L A C E must be performed before an UN L OC K can perform (Values must be
made visible before synchronization). Intra processor dependencies must be pre-
served, too.

4 C o n c l u s i o n

We have presented four primitives that can be used by threads to implement
those synchronization mechanisms and coherence models best suited to their
needs. Since order restrictions are very few, most optimizations can be im-
plemented in architectures employing these primitives. Simulations using toy
benchmarks showed very good results. Further work will consist of several ac-
tivities. The protocol will be compared to other coherence schemes and a more
abstract model of our architecture will be implemented. This model will be used
to gain performance results using real benchmarks from the SPLASH suite and
or-parallel prolog programs. Properties of the protocol will be verified using a
framework like that given in [Co192].

R e f e r e n c e s

[AD96]

[AG92]

[AH90]

[BH90]

[CBZ91]

[Co192]

[DSB88]

[Lam79]

[Mos93]

A.Mikschl and W. Damm. MSPARC: A multithreaded Sparc. In EuroPar 96.
Springer LNCS (this volume), 1996.
Siemens AG. ESPRIT I I I - Project / Hierarchical Optical Interconnects for
Computer Systems (HOLICS). Internal paper, Siemens AG, Mfinchen, 1992.
Sarita V. Adve and Mark D. Hill. Weak ordering - a new definition. In Pro-
ceedings of the 17th Annual International Symposium on Computer Architec-
ture. IEEE, May 1990.
Lothar Borrmann and Martin Herdieckerhoff. A coherency model for virtualy
shared memory. In Proceedings of the International Conference on Parallel
Processing, August 1990.
John B. Carter, John K. Bennet, and Willy Zwaenepoel. Implementation and

performance of munin. Symposium on Operating System Principles, 1991.
William W. Collier. Reasoning about parallel architectures. Prentice Hall In-
ternational, Inc., 1992.
Michael Dubois, Christoph Scheurich, and Faye A. Briggs. Synchronisation,

coherence and event ordering in multiprocessors. IEEE Computer, 21(2),
February 1988.
Leslie Lamport. How to make a multiprocessor computer that correctly ex-
ecutes multiprocess programms. IEEE Transactions on Computers, C-28(9),
September 1979.
David Mosberger. Memory consistency models. ACM SIGOP Operating Sys-
tems Review, 27(1), 1993.

