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A b s t r a c t .  Data used by parallel programs can be divided into classes, 
based on how threads access it. For different classes of data different 
coherence mechanisms might be optimal. 
This paper presents four primitives designed for use in a shared memory 
multiprocessor system, where each processor has its private cache. Using 
these primitives, programmers can implement those coherence models 
that are best suited to their applications. The paper gives a description 
of the primitives and some implementation details. 

1 I n t r o d u c t i o n  

A simple and intuitive memory model for shared memory multiprocessors is 
that  of sequential consistency ([Lam79]). However, this model severely restricts 
the use of many optimization techniques in multiprocessor systems ([AH90]). 
Weak cache coherence models (see e.g. [Mos93] for an overview) often provide 
a restricted form of sequential consistency, namely only at certain points in 
t ime (synchronization points, e.g. in [BH90]), only for a subset of memory ad- 
dresses (e.g. synchronization variables, [DSBS8]) or only if tasks adhere to certain 
conditions ([AH90]), thereby allowing some optimization to be used. However, 
sequential consistency is not the only feasible memory model. 

Many programs (tasks) are written to produce input determined results 2. To 
do so, parallel threads of such a task compute some values, possibly using local 
variables, input data  and values computed previously by other threads. They 
then assign some of these values to shared variables and finally signal that  they 
have done so (e.g. they synchronize, using flags, semaphores, barriers and the 
like). Synchronizing allows other threads to use the values just computed for 
their own computation. 

Data can therefore be (at least) divided into shared, private (local variables) 
and data  used to synchronize threads. For different classes different coherence 
mechanisms might be optimal ([CBZ91]). However, hardware can usually not 
distinguish between these classes. 

* email: Juergen.Risau@informatik.tmi-oldenburg.de 
2 We restrict our discussion to this class of tasks. Other classes, like nondetermistic 

algorithms (e.g. chaotic algorithms) or tasks that don't relay on accurate, up to date 
data (e.g. some load balancing algorithms), are omitted for space reasons, but they, 
too, can be implemented using our primitives. 
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To adhere to these observations, threads should be given means to synchro- 
nize and choose which data they want to keep coherent. Following the RISC 
approach to provide primitives rather than solutions, we propose four instruc- 
tions that were designed for a shared memory multiprocessor with private caches 
per processor. Using these instructions, threads can lock memory addresses and 
control some aspects of caching. The primitives can be combined to implement 
high level language synchronization primitives and coherence schemes. 

The paper is organized as follows. In section 2 we present the new primitives. 
Section 3 gives implementation hints and section 4 shows further work. 

2 T h e  P r i m i t i v e s  

We assume a shared memory multiprocessor where each processor has a private 
cache. Caches implement a write back strategy. S T O R E  instructions do not cause 
any kind of coherence action, but merely write the value in the local cache. We 
propose the following new instructions: 

- L O C K  address 
This instructions locks the specified address if it was not already locked. If 
it was, then the instruction is only completed if address becomes unlocked. 

- UNLOCK address 
The specified address becomes unlocked. 

- C O P Y _ B A C K  node, address, nr_of_addresses 
This instruction affects all lines in the cache of processor node contain- 
ing data  with addresses between (and including) address and address + 
nr_of_addresses -1. All dirty words, that is words that  were written by the 
processor, from these lines are written back to main memory. Special values 
for node are o w n  and all. A special value for nr_of_addresses is all, which 
affects all lines from the address space of the task issuing this instruction. 

- R E P L A C E  node, address, nr_of_addresses 
This instruction behaves exactly like C O P Y - B A C K  with the exception that  
lines are additionally invalidated (removed from the cache). 
Essentially L O C K  and UNLOCK serve as synchronization primitives. Imple- 

menting a binary semaphore is straightforward, since at most one thread can 
lock a given memory address at any time. General semaphores and other forms 
of synchronization can be implemented in a obvious way. 

R E P L A C E  and COP Y_BA CK are used to make data  written by a processor 
visible to other processors. Threads can use these instructions to copy their 
results back to main memory and invalidate the corresponding lines in the caches 
of the processors running threads that  are to read the results. 

Since S T O R E  actions do not cause any coherence actions, multiple proces- 
sors can modify a copy of the same line in their caches. This usually happens 
because either threads don't  synchronize or false sharing occurs. The problem 
of false sharing is solved by specifying C O P Y _ B A C K  and R E P L A C E  as is done 
above, vis. that  they write only dirty words to main memory (if a line is written 
back due to the replacement policy of the cache, only it's dirty words must be 
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actually written, too). If threads write to the same word of the same line without 
synchronizing, it is undefined which word will be in main memory after the lines 
have been written. This usually is a result of a programming error 3 that would 
occur in sequentially consistent systems, too. 

3 I m p l e m e n t a t i o n  

The primitives presented in the last section have been implemented in a VHDL 
model of the WAMCOT-Architecture. WAMCOT is a shared memory NUMA 
architecture, with an optical bus ([AG92]), multithreaded processors ([AD96]) 
and a weak cache coherence protocol based on these Primitives. The VHDL 
model showed the feasibility of the protocol but did not lend itself very well to a 
simulation with real benchmarks. Toy benchmarks yielded a processor utilization 
of up to 83%, which encourages us to further pursue our approach. Due to lack of 
performance results with real applications, we won't  describe the implementation 
in detail here, but merely discuss some important aspects and costs. 

To keep book about which addresses are locked, the memory controller of an 
architecture implementing our primitives must be equipped with a lock table. 
This data  structure contains one bit for each lockable data item, that is, one bit 
per word in main memory. Implementations can of cause decide to make only 
a small amount  of main memory lockable and leave it to the compiler or run 
time system to map a portion of this into the address space of each task. We 
choose a different approach and implemented one lock bit per so many words as 
are in a cache line. This implies that a thread that locks an address in fact locks 
the entire line containing that address. Since threads do usually not know which 
addresses are in the same line, a thread trying to lock two addresses from the 
same line will produce a deadlock. In our implementation, threads are therefore 
only allowed to lock at most one address at any time. Since threads can agree 
to exclusive access to any number of addresses by locking one of them, this is 
not a severe restriction. Assuming 32 bits per word and 8 words per line, our 
implementation requires 0.4% additionally memory to accommodate the lock 
table. 

We have already mentioned, that  an implementation of the primitives re- 
quires one dirty bit per word in a cache line. Apart from these, only 3 bits are 
needed for the status of each line. One is a valid bit which shows whether the 
words in the line contain valid data. The second is the request bit which is re- 
quired due to the multithreading ability of the processor. The third is called lock 
bit and is an optimization to reduce bus traffic. Whenever a processor issues a 
L O C I (  instruction on an address that is already locked, the lock bit in the cache 
is set. If the processor tries to lock the address again, no access to the lock table 
is needed, because the information that the line is locked is already in the cache. 
An U N L O C K  causes the memory controller to send invalidation messages to all 
caches, thereby clearing the lock bits, too. If the lock bit is not set, the state of 

3 in input determined tasks. Other classes of tasks might make use of this behavior. 
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the corresponding bit in the lock table is not known and so the processor must 
access main memory. 

Order restrictions between instructions are kept to a minimum in this proto- 
col: S T O R E s  must have been performed (the value must be written in the cache) 
before either COPY-BACh" or R E P L A C E  can perform. C O P Y _ B A C K  and RE- 
P L A C E  must be performed before an UN L OC K can perform (Values must be 
made visible before synchronization). Intra processor dependencies must be pre- 
served, too. 

4 C o n c l u s i o n  

We have presented four primitives that can be used by threads to implement 
those synchronization mechanisms and coherence models best suited to their 
needs. Since order restrictions are very few, most optimizations can be im- 
plemented in architectures employing these primitives. Simulations using toy 
benchmarks showed very good results. Further work will consist of several ac- 
tivities. The protocol will be compared to other coherence schemes and a more 
abstract model of our architecture will be implemented. This model will be used 
to gain performance results using real benchmarks from the SPLASH suite and 
or-parallel prolog programs. Properties of the protocol will be verified using a 
framework like that given in [Co192]. 
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