Abstract
We are interested in the parallel complexity of computing a minimum length schedule for executing n tasks of equal length on m identical processors constrained by a tree precedence relation. While this problem can be solved in linear time sequentially, the best known parallel algorithms require O(log n) time using n2 processors or O(log2 n) time on n processors. In this paper we present two new parallel algorithms. The first runs in time O(m log n) using n/ log n processors of an EREW PRAM and hence is work and time optimal for any constant m. The other runs in time O(log n log m) using n/ log m EREW PRAM processors.
Chapter PDF
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka. A simple parallel tree contraction algorithm. J. Algorithms, 10:287–302, 1989.
R. J. Anderson and G. L. Miller. Deterministic parallel list ranking. In J. H. Reif, editor, Proc. of the 3rd AWOC, LNCS 319, pages 81–90. Springer-Verlag, 1988.
G. Bilardi and A. Nicolau. Adaptive bitonic sorting: An optimal parallel algorithm for shared-memory machines. SIAM J. Comput., 18(2):216–228, 1989.
P. Brucker, M. Garey, and D. S. Johnson. Scheduling equal-length tasks under treelike precedence constraints to minimize maximum lateness. Math. Oper. Res., 2:275–284, 1977.
C. C.-Y. Chen and S. K. Das. Breadth-first traversal of trees and integer sorting in parallel. Inf. Process. Lett., 41:39–49, 1992.
R. Cole. Parallel merge sort. SIAM J. Comput., 17:770–785, 1988.
R. Cole and U. Vishkin. Approximate parallel scheduling, Part I: The basic technique with applications to optimal parallel list ranking in logarithmic time. SIAM J. Comput., 17(1):128–142, 1988.
R. Cole and U. Vishkin. Optimal parallel algorithms for expression tree evaluation and list ranking. In J. H. Reif, editor, Proc. of the 3rd AWOC, LNCS 319, pages 91–100. Springer-Verlag, 1988.
E. Dekel and S. Sahni. A parallel matching algorithm for convex bipartite graphs and applications to scheduling. J. Parallel Distrib. Comput., 1:185–205, 1984.
D. Dolev, E. Upfal, and M. K. Warmuth. The parallel complexity of scheduling with precedence constraints. J. Parallel Distrib. Comput., 3:553–576, 1986.
A. Gibbons and W. Rytter. Optimal parallel algorithms for dynamic expression evaluation and context-free recognition. Inf. Comput., 81(1):32–45, 1989.
T. Hagerup and C. Rüb. Optimal merging and sorting on the EREW PRAM. Inf. Process. Lett., 33:181–185, 1989.
D. Helmbold and E. W. Mayr. Fast scheduling algorithms on parallel computers. In F. P. Preparata, editor, Advances in Computing Research; Parallel and Distributed Computing, volume 4, pages 39–68. JAI Press Inc., Greenwich, CT-London, 1987.
T. C. Hu. Parallel sequencing and assembly line problems. Operations Research, 9(6):841–848, 1961.
S. R. Kosaraju and A. L. Delcher. Optimal parallel evaluation of tree-structured computations by raking (extended abstract). In J. H. Reif, editor, Proc. of the 3rd AWOC, LNCS 319, pages 101–110. Springer-Verlag, 1988.
R. E. Ladner and M. J. Fischer. Parallel prefix computation. J. ACM, 27(4):831–838, 1980.
G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In Proc. of the 26th FOCS, pages 478–489. IEEE, 1985.
R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm. SIAM J. Comput, 14(4):862–874, 1985.
J. D. Ullman. NP-complete scheduling problems. J. Comput. Syst. Sci., 10(3):-384–393, 1975.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mayr, E.W., Stadtherr, H. (1996). Efficient parallel algorithms for scheduling with tree precedence constraints. In: Bougé, L., Fraigniaud, P., Mignotte, A., Robert, Y. (eds) Euro-Par'96 Parallel Processing. Euro-Par 1996. Lecture Notes in Computer Science, vol 1124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024747
Download citation
DOI: https://doi.org/10.1007/BFb0024747
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61627-6
Online ISBN: 978-3-540-70636-6
eBook Packages: Springer Book Archive