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A b s t r a c t .  This paper addresses the dag scheduling problem, proposing 
the bulk synchronous parallel (BSP) model as a framework for the deriva- 
tion of general purpose parallel computer schedules of uniform dags, i.e., 
of dags that stand for tightly-nested loops with computable distance 
vectors. A general technique for the BSP scheduling of normalised uni- 
form dags is introduced and analysed in terms of the BSP cost model, 
and methods for the normalisation of generic uniform dags are briefly 
overviewed in the paper. 

1 I n t r o d u c t i o n  

During the last two decades a great deal of research effort has been devoted 
to the identification and scheduling of potential parallelism. Despite the criti- 
cism pointing out its slow pace of progress, this research has led to remarkable 
advances. Data dependence analysis [2], loop transformation [1, 13], potential 
parallelism identification [6, 13], and dag scheduling [4, 7] are but a few exam- 
ples of fields whose tremendous development has provided techniques successfully 
incorporated into nowadays' optimising compilers and tools. 

Nevertheless, there is a justifiable dissatisfaction about the overall progress in 
the scheduling area; one of its main causes is the lack of unity in approaching the 
problem, especially the lack of a standard and realistic parallel programming and 
cost model. Therefore, the researchers have had either to restrict their interest 
to the analysis of virtual parallelism--when they wanted to remain general, 
or to address the problem for a specific parallel architecturc if they aimed 
at being practical. Clearly, both options have their disadvantages. This paper 
avoids limiting to one of the two directions by proposing the bulk synchronous 
parallel (BSP) programming and cost model [11, 8] as a target platform for the 
derivation of scalable dag schedules for general purpose parallel computers. 

The paper is organised as follows. In Sect. 2, the BSP model is briefly de- 
scribed. Then, in Sect. 3, a new technique for the BSP scheduling of normalised 
uniform dags, i.e., of dags that stand for tightly-nested loops whose data depen- 
dences are expressible as distance vectors with all non-negative components, is 
devised and analysed in terms of the BSP cost model. Several methods for the 
conversion of generic uniform dags (or, equivalently, of generic tightly-nested 
loops with computable distance vectors) to normalised uniform dag form are 
mentioned in Sect. 4. A final section including a short summary and further 
work directions concludes the paper. 
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2 T h e  B u l k  S y n c h r o n o u s  P a r a l l e l  M o d e l  

The existence of a standard model is the only way to fully impose parallel com- 
puting as a viable alternative to sequential computing. The BSP model [11, 8] 
provides such a unifying framework for the design and programming of gen- 
eral purpose parallel computers. A BSP computer consists of a set of processor- 
memory pairs, a communication network for point-to-point message delivery, and 
a mechanism for efficient barrier synchronisation of all processors or of a subset 
of processors. No specialised broadcasting or combining facilities are available. 

The performance of a BSP computer is characterised by three parameters: 
p, the number of processors; L, the minimal number of time steps between suc- 
cessive synchronisation operations, or the synchronisation periodicity; and g, the 
ratio between the total number of local operations performed by all processors 
in one second and the total number of words delivered by the communication 
network in one second. The parameter L is a measure of the network latency, 
whereas the parameter g is related to the time required to complete a so-called 
h-relation, i.e., a routing problem where any processor has at most h packets to 
send to various processors in the network, and where at most h packets are to 
be received by any processor; practically, g is the value such that gh is an upper 
bound for the number of time steps required to perform an h-relation. 

A BSP computation consists of a sequence of supersteps; in any superstep, the 
processors may execute operations on locally held data and/or initiate read/write 
requests for non-local data. However, these non-local memory accesses take ef- 
fect only when all the processors reach the barrier synchronisation that ends 
that superstep. To assess the complexity of a BSP algorithm, one has to count 
the costs of its constituent supersteps. The cost of a superstep S depends on 
the synchronisation cost (L), on the maximum number of local computation 
steps executed by any processor during S (w), and on the maximum number of 
messages sent/received by any processor during S (h,, respectively hr)l: 

cost(S) = max{L, w, gh,, ghr} (1) 

Accordingly, the complexity of a BSP algorithm depends not only on the problem 
size and on the number of processors, but also on the BSP parameters L and g. 

3 B S P  S c h e d u l i n g  o f  N o r m a l i s e d  U n i f o r m  D a g s  

A normalised uniform dag is a directed acyclic graph used to represent a fully 
permutable [12] loop nest (Fig. 1). The dag is uniform in the sense that edges 
(data dependences) are uniform across the vertex space (iteration space); the 
uniform dag is normalised if any edge head points to a vertex (point in the 
iteration space) with all coordinates greater than or equal to those corresponding 
to the tall of the edge. A formal definition follows. 

1 several expressions have been proposed for the cost of a superstep; since all these 
expressions are equivalent within a small multiplicative constant, we chose the one 
in [8], which best accounts for the overlapping of computation and communication 
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f o r i l = 0 , n - l d o  
for iz = 0, n - 1 do 

for iK = 0 ,n- -  1 do 
(al [i], a2 [i],. . . ,  ar [i]) = f ( a ~  [i - dl ], ao 2 [i - d2],. . . ,  a~q [i - dq]) 

Fig. 1. A fully permutable loop nest: i = ( i l , i % . . . , i K ) ;  aj,  1 < j <_ r is a 
K-dimensional array; a~ i E { a l , a z , . . .  ,at} and dj is a K-dimensional distance (de- 
pendence) vector with non-negative elements, 1 < j < q; f : ~q -~ IR ~. 

D e f i n i t i o n  1. A K-dimensional normalised uniform dag (NU-dag for short) is 
a directed acyclic graph G = (V, E)  with: 

V = (0..n - 1) K, n �9 ]N*, 
E = {< x , x + d > : <  V , V  >1 d �9 { d l , d 2 , . . . , d q }  }, (2) 

where dj : ~IK\{ (0, 0 , . . . ,  0) }, 1 < j < q. Each vertex i �9 V stands for a computat ion 

(al[i] ,a2[i], .  . . ,  ar[i]) = f ( a a l [ i  - dx],aa2[i - d2], . . .  , aa , [ i  - dq]), 

where as[i ] : ~ ,  1 < j <_ r, a a r 1 4 9  , a t}  for 1 _< j < q, and f : ]R q -~ ]R r, 
with appropriate boundary values for the arrays as, 1 _< j _< r. 

Although Definition 1 requires that  all loops iterate from 0 to n - 1, the results 
in this section can be easily extended to the case when V = (0..hi - 1) • (0..nz - 
1) x . . .  • (O..nK -- 1). It is also worth noticing that ,  if any identical vectors 
dj = ds,, 1 < j < j '  <_ q exist, D = {d l , d2 , . . . , dq}  must be considered a bag 
instead of a set; multiple edges between some pairs of vertices exist in this case. 

In the following, we shall consider the case when D contains K linearly 
independent vectors; otherwise, a parti t ion of the dag into p independent sub- 
dags of equivalent complexity exists and can be used to perform the loop in 
a single computation superstep. To derive a p-processor BSP program for the 
computation of an NU-dag, the dag G is first parti t ioned into p K / ( K - 1 )  identical 
sub_dags 2 Gh,~2 ..... ~K, 0 __< 51, i2 , . . . ,  ~K < p l / ( r - 1 ) ,  each of which is isomorphic 
with G: 

G~,,~2 ..... ~K = (V ~,,~2 ..... ~K, E~,,~= ..... ~ )  = 
�9 ~ n __  1 n = ({( ix , iz , . .  , i K ) : V I V j  : I . . K .  Sp~-rZZ-ezW < ij  < (~S + )p,-rrrrzW}, 

{< z , y  >: E I z , y  e V ~,,~ ..... ~ } ) .  

The computation of each sub-dag G h,~2 ..... ~X__also called a t i le---will  be assigned 
to one of the p processors of the parallel machine�9 Data  dependences codified 
by edges in an E h,~2,''',~K set are internalised by this approach (i.e., they are 

solved locally by the processor computing G h,~2 ..... ~x), whereas edges in E bu t  

2 assume that K > 1 and pl / (K-1)  divides n 
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not in any E h 32 ..... ~K stand for data dependences that  must be satisfied through 
inter-processor communication. The choice of the tile size (i.e., n /p  1/(g- l ) )  is 
justified later b~ Theorem 3. 

The graph G = (~r,~) = ( ( O . . p l / ( K - 1 )  _ 1)K,{ < x , y  >:< ~ , ~  > I x  # y A 
3 < a,/~ >: E * a �9 V = A/~ �9 V~}) is itself an NU-dag having a vertex 
for each tile in the original dag; we shall call it the tile dag. The hyperplane 
method of Lamport [6] is used to schedule the tile dag for parallel execution. This 
widely applied method (also known as wave front scheduling [1, 13]) consists of 
successively scheduling for concurrent execution the intersections of the iteration 
space ((O..p 1/(K-l) - 1) K in our case) with a family of (K - 1)-dimensional 
parallel hyperplanes. The number of hyperplanes in this family gives the number 
of supersteps required to accomplish the computation (i.e., the schedule length). 

T h e o r e m  2. Let G = (V, E) be a K-dimensional NU-dag and G = (~", E) be its 
associated tile dag. Assume that the tile size is large enough (i.e., larger than the 
distance vector sizes) for the dependences not internalised by the tiling to occur 
only between neighbour tiles, and for any tile G i~'i2 ..... ix to depend (at least) on 
each of the tiles G h-l'~2 ..... ~K, G h92-1 ..... ~K, " " ,  G h,h ..... ~x--1 Then, the set of 
( K - 1)-dimensional hyperplanes given by 

{31 + 32 + . . .  + ~K = t I 0 < t < K p  1/(K-1) - K }  (3) 

defines a minimum-length legal schedule for the tile dag G. 

Proof. It is a well-known result (see for instance [5]) that  when a family of 
hyperplanes all1 + a2i2 + . . .  + aKiK = t, a = ( a l , a 2 , . . . , a K )  : ]N is used 
for the (linear) scheduling of a size x hypercube whose distance vector set is D, 
the schedule is legal if and only if Vd �9 D * a �9 d > 0, and requires a number 
of (al + a2 + -." + aK)X + 1 supersteps. In our case, D includes (1 ,0 , . . .  ,0), 
(0, 1 , . . . ,  0 ) , . . . ,  (0, 0 , . . . ,  1) (and possibly other distance vectors d: {0, 1}K), so 
the schedule is correct if and only if a j  >_ 1, 1 _<j <_ K.  Therefore, the schedule in 
(3), which corresponds to a j  = 1, 1 _< j < K,  is legal and has minimum length. [] 

Thus, the BSP schedule of a K-dimensional NU-dag (Fig. 2) requires K p  1/(K-1)- 
K + 1 supersteps, with the following actions taking place in each superstep t, 
0 < t < Kp  1/(K-l) - K: (1) each tile G h ,~2,..3K with i1+ 32+" "+iK = t is computed 
by a distinct processor; (2) the results required for the computation of other tiles 
are sent to the processors that  will compute those tiles in later supersteps. 

T h e o r e m  3. At  most p processors are required in any superstep of the BSP 
schedule in Fig. 2. 

Proof. Let x = pl/(K-1),  and let NK : O..Kx - K --+ ~q be a function such 
that  for any 0 < t < K x  - K ,  NK(t)  gives the number of tiles scheduled for 
concurrent execution in superstep t. We shall prove by induction that,  for any 
K > 1, the following proposition equivalent to the theorem's statement is true: 

P ( K )  : Vt : O..Kx - K �9 NK(t)  < X K-1. 
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for t = 0, Kp 1/(K-1) - K do 
forall (31,32,... ,3K) : (O..p 1/(g-1) - 1) K such that  3x + i2 + . . "  + 3/~ = t do in parallel 

(1) compute G 'a'~2 ...... K 
for i l  = 3, (31 + 1) - 1 do 

for  i2 = 32  ,-rrc r, + 1) - 1 do  

f o r i g = 3 / ~  ~ , ( ~ K + I )  ~ - l d o  

(al [i], a2 [ i ] , . . . ,  ar [i]) = f (aa,  [i - dx], aa2 [i - d2] , . . . ,  aaq [i - dq]) 
(2) send data required by other tile computations 

Fig.  2. The pseudocode for the p-processor BSP scheduling of a K-dimensional 
NU-dag. An initial superstep in which input data  is provided for the boundary tiles 
must precede the whole computation. 

T h e  base  s tep is immedia te .  For the  induct ion s tep,  assume t h a t  P ( n )  is t rue  and  
let K = n + 1. Then ,  Nn+l (t) can be compu ted  as a sum count ing  the  solut ions 
for the  cases when ~n+l = r and (Zl ,~2, . . .  , in)  is allowed to  t ake  any  value such 
t h a t  Zl + ~z + " "  + in = t - r ,  for v = 0, 1 , . . . ,  t. Formally,  

Vt : O..(n + 1)x - (n + 1) * Nn+l( t )  = aoN'n(t) + a lN 'n( t  - 1) + . . .  + atN~(O),  

1, if  v _< x - 1 I N . ( T ) ,  if  7 < n x  - -  n 
where  a r  = 0, o therwise  and  N'n(7 ) = , 0, o therwise  ,0  < T < t. 

Indeed,  we mus t  count  only the  cases when a legal value is assigned to  in+l. Since 
in+t m a y  be  assigned only x legal values, ao  + a l  + . . .  + a t  = min{x ,  t} < x, or 

Vt : 0. .(n q- 1)x - (n -t- 1) �9 Nn+l( t )  _< x 0<r<tmax NIn(r) < x x n-1 = x n, 

which is P ( n  + 1) ( the induct ion hypothes is  was used for the  last  s tep) .  [] 

T h e  last  result  needed for the  c o m p u t a t i o n  of the  cost  of  a super s t ep  is 
p rov ided  by the  following theo rem 3. 

T h e o r e m  4. The amount  of data sent by a processor after computing an inner  
tile G i l 'h  ..... i~ is given by 

n K K (  n \1 n K - 1 /  K +O(1~'~ 

The amount  of data received by any processor during a superstep is at mos t  Corn. 

Proof. Let  d E D; this vector  implies d a t a  dependences  be tween  pairs  of  vert ices 
^ ^ 

of the  fo rm < i, i + d >.  For a given tile G il,12 ..... iK, we are in teres ted  in finding 

3 results similar to the first part  of this theorem have been presented in [3, 9, 10] 
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the number of such pairs whose first element belongs to G h'~2 ..... ~K, but whose 
second element does not: 

C o m ( d ) = # { < i , i + d > : < V , V >  I i E  V h'~2 ..... ~K A ( i + d )  e V \ V  ~''~2 ..... ~K} 
= #(Vh,~2 ..... ~K\{i:  Vh,~, ..... iK [ Vj :  1 . . K * i j  + d j  < ([j + 1) n~-W~})  

=#Vh,~2 ..... ~ K _ # { i : V  h,~2 ..... ~K [ V j : l . . g * i j + d j < ( ~ j + l )  ~ }  

= #Vil,~2 ..... ~K __ # { i :  ~ K  [ Vj :  1..K * ~j px-r'/~-~y -< ij < ([j + 1) p~-r-Z~'y - dj} 
n K K n 

---~ Hi----1 - - d s ) .  

As each distance vector brings a simiIar contribution to the amount of data  sent 
by a processor after computing G h 32 ..... ~x, and does this independently of other 
distance vectors, (4) is now straightforward. 

For the second part of the theorem, let us consider the worst case, i.e., the 
case of a processor Px which is assigned a tile in each of the K supersteps 
that  may depend on data sent during the current superstep t. Consider now 
all the vertices in the K isomorphic tiles assigned to Px during the supersteps 
t + 1, t + 2 , . . . ,  t + K, and let x = (Xl, x z , . . . ,  XK) be one of these vertices such 
that x - d E V h'~2 ..... ~x with ~1 + ~2 + " "  + ~K = t. Then, the distance vector d 
does not generate dependences on data computed during the superstep t for any 
of the other K - 1 vertices isomorphic with x. Indeed, assume that  such a vertex 
Y : (Yl,Y2,.. �9 ,YK) ----- (Zl +0~1 pl_iT.(.R.=~., X 2 n  q-a2 pl-iT('R'=~,...n ,X K q_O~ K pl-i-]'(-R-=Y~)n 
existed with ~ = 1  aS ~ 0 (the two vertices must belong to tiles computed in 
different supersteps). Then, we have: 

~ ~ : - - )p,-vrr-=w  
x - d e V  "~''2 ..... '~ = = } V j : I . . K .  S ~  < x s  d S < ( ~ S + I  n 

- -  q 1 ?% V j : I . . K * ( ~ S +  j )nT/r~=rr<xs+ Sn~-rTr~=~ ds< + + )n~-~w=rr==:} 
_ 1 n a ~ (~j + a s V j : I . . K . ( [ S +  S)n~-u~-- -rr<ys-dj< + ) ~ = : : : }  

y - d = (yl - dl,y2 - d2, . . .  ,yI,: - dK) E V h+a~'~*+~2 ..... iK+a~. 

Since both x - d and y - d are supposed to be computed in the same superstep 
K ~J~" )-~j=I($jK ~. + ~ j ) ,  t = ~ S - x  = the assumption that )'~'~=1 as ~ 0 is contradicted. 

We ca~-therefore "superpose" the K isomorphic tile~, and for any vertex for 
which the distance vector d involves an external data  dependence, at most one 
vertex from the superposed set of tiles will receive this data  from a tile computed 
in superstep t. Hence, the maximum amount of data  received by P ,  during 
superstep t due to the distance vector d can be computed as in the first part of 
the proof, and the desired result is immediate, i3 

Consequently, the cost of a superstep t of the schedule is 

max~L,  n g --= k (p l / (K--1))  c08t(f) ,gCor~),  c08t(t) 

with Cam given by (4), and cost( f)  representing the computational cost for a 
single vertex of the dag. After simplifications, the cost of the entire schedule is 

nK (gprr~-~l - g + l ) g C o m } .  (5) max{  ( K p ~  - K + I ) L ,  (K+o(1))--~-cost(f ) ,  
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Thus, K-optimality 4 is obtained if the BSP parameters L and g are low enough 
(i.e., L < nKcos t ( f ) /p  K/(K-1) and g < n cos t ( f ) / (p  1~(K-l) EdED K ~-]d=l dj)). 

4 I t e r a t i o n  S p a c e  N o r m a l i s a t i o n  

Since not all tightly-nested loops can be directly mapped onto an NU-dag, the 
BSP schedule proposed in the Sect. 3 would be really useful if a procedure existed 
to transform a generic uniform iteration space into a normalised one. As proved 
by Wolf and Lain [12], such a procedure does exist in the general case; indeed, 
the authors show in [12] that  any perfect loop nest with computable distance 
vectors can be converted into a fully permutable loop nest (which they call the 
canonical form of the loop nest) by using an affine transformation of the iteration 
space. Formally, if D is the K x q matrix whose columns are the distance vectors 
of the original loop nest, a O(K2q)-time algorithm that  finds a unimodular lower 
triangular transformation matrix T = (tij)l<_id<_K such that  D + = T �9 D > 0  
(where the inequality is applied component-wise) is developed in [12]. However, 
Wolf and La.m pay no attention to choosing a transformation that  would result 
in a minimum communication overhead. Still, if the NU-dag BSP schedule is to 
be extended for generic uniform dags, one needs to know this communication 
overhead for the transformed loop. 

C o r o l l a r y  5. The amount of data exchanged by a processor computing a size x 
hypercubic tile of the transformed iteration space is 

) C~ = agK-1 E tikdkj + o(1) . (6) 
\i=1 j=l  k=l 

Proof. Since the distance vectors of the transformed loop are 
1 < j  <q,  with ~ K = ~'~k=l tikdkj, (6) directly follows from Theorem 4. 13 

Several approaches to find a transformation T that  minimises (6) have been 
proposed so far. Ramanujarn and Sadayappan [9] have formulated a linear pro- 
gramming problem whose solution is an optimal unimodular lower triangular 
transformation T: find (tij)l<i,j<K_ _ which minimises ~-~ff=l Ej=lq Ek=IK tikdkj 

subject to t i i =  1, 1 < i < K; tij = O, 1 < i < j < K; EK=I tikd~j > O, 
1 _< i, j _< K.  Although such a transformation leads to a particularly simple 
rewriting of the loop nest, better results can be obtained when no restriction 
are placed on the affine transformation T.  Thus, Schreiber and Dongarra [10] 
have developed a heuristic which aims at maximising the computation to com- 
munication ratio for the transformed loop nest. Also, in [3], Boulet et al. devise 
a method that  yields, for any fixed amount of computation, a legal tiling of the 
iteration space which minimises the communication overhead 5. 

4 remember that K is rarely larger than 3 or 4 
5 if D is square, the matrix of the affine transformation induced by this method is 

D -1 (recall that D is non-singular), which is optimal under all circumstances 



562 

5 C o n c l u s i o n s  

This paper has proposed a strategy for the BSP scheduling of loop nests repre- 
sentable as uniform dags, attempting to clarify the relation between tiling and 
scheduling for real computers--a currently open problem raised in [3]. The result- 
ing schedule is portable across any parallel platform, and attains K-optimality 
(where K is the depth of the loop nest) if the BSP parameters L and g of the tar- 
get machine are low enough (or, equivalently, if the problem size is large enough). 

Further work is required to asses the effectiveness of varying the tile size 
across the computation in order to improve the load balancing, while maintain- 
ing the synchronisation and communication overheads within acceptable bounds. 
Also, a slight modification of the basic NU-dag scheduling technique must be con- 
sidered after the normalisation of a generic uniform dag, since the transformed 
iteration space is no longer rectangular. Finally, subsequent efforts must focus 
on the design of techniques for the scheduling of untightly-nested loops onto 
general purpose parallel computers. 
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