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Abs t rac t .  In most commercial processors, data prefetching has been 
disregarded as a potentially effective solution to hide cache misses be- 
cause it may degrade global cache performance. The two main limita- 
tions are wrong address predictions and prefetch overhead. In this pa- 
per, a hardware/software scheme to limit wrong predictions and a proper 
hardware support to prevent prefetch requests from disrupting normal 
cache operations is proposed. 

1 In troduc t ion  
While instruction prefetching has already been successfully implemented in 

numerous commercial processors (Dec 21164, MIPS T 5 . . . ) ,  data prefetching is 
scarcely used for the moment.  Still, several processors do include hardware sup- 
port for data  prefetching. The DEC Alpha has a one-line prefetch buffer to 
implement tagged data prefetching, but to our knowledge, this prefetching fa- 
cility is disabled on current Alpha versions. The SuperSparc also has a similar 
prefetch buffer. The PowerPC has a touch instruction which induces a load to 
a null register, however the PowerPC compiler does not seem to exploit this 
instruction yet. Clearly, data prefetching has not yet emerged as a widespread 
commercial optimization. 

The problem is to understand why the approaches to prefetching that  have 
been proposed or implemented up to now are not satisfactory. There are basi- 
cally two aspects to distinguish: accuracy of prediction and hardware support for 
pre#tching. 

While very cheap, systematic prefetching and tagged prefetching [9] have the 
obvious flaw of generating many useless prefetches which induce cache pollu- 
tion and additional memory traffic: Stream buffers [7] are more efficient, but 
they lose efficiency when the number of simultaneous streams is higher than 
the number of stream buffers or when stream strides are large. Now, several 
schemes based on prediction tables (one table entry per load/store instruction) 
have been proposed where the stride of a load/store reference is automatically 
computed [6, 5]. Such schemes exhibit high prefetch efficiency (accuracy of pre- 
diction) but  their hardware cost is very significant since the table must be about 
256-entry large [5]. Software prefetching [1] exploits the subscript expression for 
address predictions by prefetching A(J+d , I )  for reference A ( J , I )  in a I , J  loop 
nest (where d is the prefetch distance). The prediction is based on the inner loop 
index. In addition to the significant compiler overhead of software prefetching, 

Due to severe paper length constraints, the length of this article nearly had to be 
halved. Thus many explanations are replaced by references to PRISM technical re- 
port 95/029 which can be obtained at http:/ /w~w.prism.uvsq, f r  in the t echn ica l  
r epor t s  section. 
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hardware support is still necessary (prefetch on miss, prefetch buffers... ) and 
the numerous additional instructions corresponding to prefetch requests and the 
associated address computations can have a non-negligible impact on instruction 
cache performance. Mowry [10] proposed a software prefetching algorithm based 
on a data  locality algorithm to determine which array references are likely to miss 
and thus reduce the number of useless prefetch requests often associated with 
software prefetching. Though the algorithm proved to be efficient, the compiler 
support is quite heavy and the fact all locality optimizations interact together 
is beneficial but also implies compiler optimizations may be hard to maintain 
when the memory architecture evolves or is augmented with new features. 

It can be noted that  existing prefetching schemes have similarities: they ex- 
ploit strided streams of references, but they are all disrupted when the stream 
of references changes stride. However, in numerical codes, many linear algebra 
operations are based on multi-dimensional objects. It is usually admitted that  
Fortran storage of such objects ensures they correspond to contiguous memory 
elements. But many linear algebra operations deal with sub-matrices or domain 
borders which correspond to non-contiguous sets of memory locations. Conse- 
quently, an array reference stream in a numerical loop nest is likely to exhibit 
periodic stride modifications. This aspect of numerical codes is usually ignored. 

With respect to address prediction accuracy, the puzzling fact is that,  upon 
entering a loop nest, the coefficients of an array subscript are usually known and 
generally won't vary during loop execution. Consequently, the reference pattern 
of most load/store instructions in a loop nest can be anticipated and need not 
be predicted. The purpose of this paper is to exploit this property and also to 
show that  taking into account more complex streams can induce significant per- 
formance improvements, by nearly eliminating wrong predictions and predicting 
stride changes in linear references. A software-assisted prefetching scheme, called 
streaming prefetch, that  deals with complex streams is proposed. The compiler 
support sums up to providing the symbolic expressions of loop index coefficients 
in the linearized expression of array subscripts. Additional hardware support is 
necessary but no costly prediction table is required. 

With respect to the appropriate hardware support for implementing trans- 
parent prefetching, i.e., without disrupting cache, several issues must be ad- 
dressed. First, the necessity to cheek the cache prior to prefetch (prefeteh on 
miss, see [8]) so as to maintain coherence and to reduce the additional memory 
traffic. These cache accesses are likely to induce processor stalls, especially with 
superscalar processors where the cache can be accessed every cycle. Second, 
reloading prefeteh requests in cache also induce processor stalls. If a prefetch 
buffer is used, each buffer access may result in an additional cycle if simulta- 
neous cache and buffer checks are not possible because of cache access time 
constraints. Even with a buffer, copying a cache line from the buffer to the cache 
would usually result in cache stalls. All these issues can strongly disrupt the 
efficiency of a prefetching scheme. In this paper, a hardware support for imple- 
menting prefetching with a very low impact on cache performance is proposed, 
thus eliminating the main hazard of prefetching: possible performance degrada- 
tions. It is shown that  when prefetching exhibits a high issue rate like streaming 
prefetch, implementation issues are critical. 

In section 2 the prefetch scheme proposed and its implementation are ex- 
plained. In section 3, the experimental framework is briefly presented. Finally, 
in section 4, the performance of the scheme is evaluated. 
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2 S t r e a m i n g  P r e f e t c h  

The different components of Streaming Prefetch are described in the next 
sections. 

2.1 U s i n g  S u b s c r i p t s  to  D r i v e  P r e f e t c h i n g  

In the table prediction schemes proposed in [6, 5], one table entry is created 
for each load/store instruction found. Because some numerical loop nests are 
complex and because loop unrolling is a now a common optimization, the number 
of load/store instructions in a loop body can be very large. As a consequence, 
the optimal size of such tables is about 256 entries [6, 5]. In each entry, two data 
must be stored: the last data address referenced and the last stride (difference 
between the last address and the address before), plus a number of flag bits. 
Consequently, the table size makes it a costly piece of hardware. 

Now, a simple analysis of the strides found in numerical loop nests shows that 
most of these strides are identical. We have counted the number of distinct stride 
sequences per loop nest for the loop nests of the 7 benchmarks considered. A 
stride sequence here corresponds to the set of coefficients in the linearized form 
of an array reference subscript. For instance, consider array reference h ( i , j )  
where the array declaration is h (N, N), the linearized expression of this reference 
is h (• ( j -  1 ) ), so that  the stride sequence is 1, N, 1 for the inner loop, N for the 
outer loop. We have found that there are usually few distinct stride sequences in 
a given loop nest (see [12]). Therefore, in a prediction table, the stride in many 
entries is likely to be the same, uselessly duplicating informations. 

So, a first improvement is to have a much smaller table, called a stride table, 
to store only the distinct stride sequences found in a loop nest. If the table 
size is S, each load/store is then fitted with log2(S) bits to indicate the table 
entry corresponding to its stride sequence. This is where the compiler is used to 
assist the prefetch mechanism. The compiler computes the linearized subscript 
expression of all array references, and determines the number of distinct stride 
sequences. Stride sequences are then numbered and one such number is given to 
each array reference which corresponds to the tag bits mentioned above. The last 
role of the compiler is to insert special instructions right before the beginning of 
the loop nest to reload the stride table with the appropriate stride values. Since 
stride reload is done at run-time, prior to loop nest execution, the stride value is 
usually known at that  time. For reloading the stride table, a specific instruction is 
necessary: UpdateStrideTable <TableEntryNumber> <CoefficientDepth> 
< S t r i d e V a l u e > .  Statistics show a stride table size of 8 is sufficient [12]. 

S t r i d e s  a r e  n o t  e q u a l  to  coef f ic ien ts  
The issue now is to determine which value to use as strides. Indeed, the loop 

index coefficients of a linearized subscript usually do not correspond exactly to 
the strides. Consider the example loop below. 

The inner stride of references B ( I 3 ,  I2 ,  I 1 ) ,  D ( I1 ,  I2 ,  I3)  are respectively 1 
and N*N words. The linearized subscripts corresponding to reference B ( I  3, I2 ,  I 1 ) 
is B( I3+N*( I2 -1 )+N*N*( I I -1 ) ) .  Since the loop bounds do not necessarily cor- 
respond to 1 and N, the stride of the reference can change at the end of each 
execution of loop I3 (this stride can be called the I3 stride). For given values 
of I1 ,  I2, loop I3 terminates at element B(U3+N*(I2-1)+N*N*(II-1)) ,  and the 
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C - -  Array  D e c l a r a t i o n s  
REAL A(N),B(N,N),D(N,N),E(N),F(N) 

C - -  Loop Nes~ 
DO I I = L 1 , U 1 , S 1  

C = A(II) 
DO 12----L2,U2,S2 

F(12) = F(m) + 1 
DO J 3 ~ L 3 , U 3 , S 3  
c = c + s(Is,12,zl) + D(n,12J~) 

E N D D O  
E N D D O  
E(I1) = C 

ENDDO 

Table  E n t r y  No. Dep th=G D e p t h = l  D e p t h = 2  
1 (references A(I1) ,  E( I1)  0 0 1 

(~e~ . . . .  ce F(12)) o 1 o 
3 (re, ...... B(I3,I2,n)) 1 N N*N 
4 (re'  . . . . . .  D(I1,I2,13))  N*N N 1 

Fig. 1. Example Loop and Corresponding Stride Table. 

next loop I3 begins at B(L3+N*I2+N*N* ( I1 -1 ) )  (assuming loop I2 did not ter- 
minate also). So the I2 stride is equal to (L3-U3)+~l, where N is the coefficient of 
loop index I2 in the linearized expression of the subscript. If loop I2 terminates 
when loop I3 terminates, the last reference is B(U3+N*(U2-1)+N*N*(II-1)) 
and the next reference is B(L3+N*(L2-1)+N*N*I1), so the I1 stride is equal 
to (L3-U3) +N* (L2-U2) +N*N. 

More generally, for an array subscript A(cn*In+...+c2*I2+cl*I1), the stride 
u s e d  w h e n  a l l  l o o p s  n . . .  p a r e  a b o u t  to  c o m p l e t e  is e q u a l  t o  on* (Ln-(~n)+. . .  + c p + I *  ( L p + I - U p + I ) + c p .  

Therefore, in order to derive the stride values, it is necessary to get the value of 
the Lk-Lk expressions. This issue is addressed in section 2.2 

In addition to stride redundancy, a second flaw of prediction tables is their 
sensitivity to stride disruption. Whenether the loop nest depth is higher than 1, 
stride disruption occurs every time the inner loop has completed if the inner 
loop bound does not correspond to the first array dimension. Each time a stride 
disruption occurs, not only the next address is wrongly predicted (possibly pol- 
luting the cache), but stride stability must be reached before prefetching again 
(requiring 2 [5] or 3 [6] references depending on the scheme). While the impact 
of this flaw is negligible if the number of iterations in the inner loop is high, it 
can become significant otherwise. 

Because in streaming prefetch the stride is provided by the compiler, not 
only there is no significant cold-start effect due to stride stability, but the target 
address of the stride disruption can be computed and prefetched. Consequently, 
except for conflict misses, theoretically only one miss should occur (for the first 
reference) when this scheme is applied to a linear subscript. Actually, the neces- 
sity to prefetch at a distance higher than one iteration (see section 2.3) induces 
a few more misses (the number of misses is directly related to the prefetch dis- 
tance). 

2.2 S t r e a m  L e n g t h  
Most prefetching schemes are restricted to inner loops because they can only 

exploit single-stride streams. As soon as streams change strides, which can hap- 
pen every time the inner loop ends, prefetching will either stop or breed useless 
memory requets. We have measured inner stream lengths for all benchmarks 
and found a majority are fairly small, i.e., about 20 iterations, even though 
high peaks can be observed [12]. Thus, current prefetching schemes performance, 
though already high, is bounded by multi-stride linear reference patterns. In the 
previous section, it has been shown that strides are completely determined by 
the subscripts index coefficients and the stream lengths Lk-Uk. 

The expression Lk-Uk, mentioned in the previous section, does not corre- 
spond to the difference between the current lower and upper bounds, but to the 



769 

difference between the next lower bound and the current upper bound. Because 
it may not be trivial to obtain the next lower bound, we based the mechanism 
on the assumption that  the value L-u seldom changes, or that its stride dLu is 
constant. This means we assumed a stream length is either constant or varies in 
a strided manner. This hypothesis proved to be true in a large majority of cases. 
In the case where the loop bounds are multilinear (i.e., they depend on several 
outer loop indices) or even more complex expressions, the scheme proposed be- 
low will not behave properly. However, multilinear loop bounds are much tess 
frequent than multilinear subscripts. 

The issue now is to provide the necessary hardware/software support to com- 
pute the stream length on-the-fly so as to get the Lk-Uk value. Actually, the 
stream length can be obtained by extending a piece of hardware now found in 
many processors: the branch prediction table (Dec 21164, PowerPC620. . . ) .  

Indeed, each time a loop iteration completes, a branch is taken. The number 
of times the branch is taken corresponds to the number of iterations of the loop 
associated with this branch. 2 Therefore, the principle is to add length counters to 
each entry of the prediction table. To implement length prediction the following 
data  must be stored: the current stream length, and the last stream length which 
corresponds to the current stream length until the branch was not taken. Also 
the last stream length information must be duplicated in the stride table for each 
depth (since it will then be used to compute the strides). 

Adding several new data per branch table entry is a costly solution. It can 
be noted that  only the branches in the loops active at a given time need have 
these counters. Therefore, instead of fitting each branch prediction table entry 
with two length data, a small additional table can be used. Each entry in this 
table contains the two length data, and the table is indexed by the branch PC, 
just  like the branch prediction table. The cost of this solution can be further 
reduced by having the compiler indicate which branch corresponds to a loop 
branch. Considering the benefit of multi-stride prefetching beyond the 4th loop 
level is often negligible, a 4-entry table can then be used. 

For triangular loops where bounds are non-constant but vary with a constant 
stride, the scheme has been augmented with a length stride field in addition to 
the current length and last length fields. 

An overview of Streaming Prefetch with the example of figure 1 can be found 
in [12]. 

2.3 Hardware I m p l e m e n t a t i o n  Issues  
As mentioned in section 1, a prefetching scheme can behave poorly or even 

degrade global processor performance if several implementation issues are not 
addressed. First, to limit the number of useless prefetch requests and to maintain 
cache coherence, it is necessary to check whether an address is in cache before is- 
suing a prefetch. Such tests can result in numerous cache stalls and consequently 
processor stalls. Second reloading incoming prefetch requests is another major  
source of cache stalls. In most commercial implementations of data  prefetching 
(Sun Supersparc, Dec 21164), cache stalls due to prefetch reloads have been 
avoided by using a prefetch buffer. Incoming prefetch requests are stored in the 
buffer and are then transferred to cache when the processor hits in the buffer. 

2 Actually, to the number of iterations minus 1 since, on the last iteration, the branch 
is not taken. 



770 

The main flaw of this solution is that  a hit in the buffer can cost one more cycle 
than a cache hit, especially if cache access time is critical and the buffer cannot 
be tested simultaneously. These issues have been barely addressed up to now, 
except for Drach [3] where a modification of the instruction pipeline is proposed 
to partially hide these additional cache accesses. 

In this implementation, we have addressed both issues simultaneously. The 
basic idea is to separate the cache into several independent banks which will 
be called subbanks. A similar technique was proposed on the Dec 21164 to allow 
multiple cache accesses per cycle, and we also introduced it for a different purpose 
in [11]. These subbanks should not be confused with the banks used for set- 
associativity. They actually correspond to a division of such banks. Consider a 
w - w a y  associative cache where each bank is partitioned in b subbanks. If the 
lines of this cache are numbered from 0 to N - 1, two lines, which indices are L1 
and L2, belong to the same bank if L1 - L2 modulo N / w .  Now, L1 and L2 belong 
to the same subbank if they belong to the same bank and if L1 - L2 modulo b. 

Subbank parti t ion allows multiple accesses per cycle, so that cache checks 
can be done in parallel with normal cache requests without ever stalling the 
cache. Still, since a processor request has always priority over a prefetch request, 
a small 2-entry buffer must be added to each subbank to buffer pending cache 
check prefeteh requests. Furthermore, we use this subbank technique to reload 
incoming prefetch requests without stalling the cache. A prefetch buffer is still 
necessary but its size (i.e., its cost) needs not be large (2 lines) since prefetch 
requests are systematically reloaded in cache. In addition to prefetch buffer size 
reduction, the main asset of this technique is that  hits on prefetched lines do not 
cost additional cycles. 

To compensate for memory latency (20 cycles in our case), a prefetch distance 
of ~ = 8 iterations was used for inner loop and 1 iteration for outer loops. The 
cache check step can become a bottleneck if prefetch requests are numerous. 
Actually if prefetch requests are filtered according to the following criteria most 
useless requests can be removed: (1) If the stride is larger than the line size, the 
prefeteh request is issued whatsoever. (2) If the stride is smaller than the line size, 
the request is issued only if the target address modulo the stride is smaller than 
the stride. (3) If the stride is null no prefetch request issued. Further explanations 
on these criteria can be found in [12]. 

3 E x p e r i m e n t a l  F r a m e w o r k  
Seven benchmarks from the Perfect Club Suite [2] were used. For each bench- 

mark, a 50 million-entry trace was extracted. Additional code instrumentation 
like instructions to table reload instructions took the form of calls to specific 
routines that are detected at tracing time. All source-code instrumentation was 
inserted with the Sage++ [4] compiler. More details on the methodology can be 
found in [12]. 

4 P e r f o r m a n c e  E v a l u a t i o n  
For all experiments we have used a 32-Kbyte cache, 4-way associative with 

a 64-byte line; the cache is pipelined with a 2-cycle access time. Such cache pa- 
rameters are fairly standard for current or soon to appear processors. The miss 
latency is equal to 20 cycles. In Figure 2a, the miss ratio of all codes with a 
standard cache and a cache plus streaming prefetch is shown. Though original 
miss ratios are low, streaming prefetch removes misses in most codes and brings 
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Fig. 2. (a) Miss Ratio. (b) Fraction of Misses Removed. 

all miss ratios down to 0.15% or less. Figure 2b shows the fraction of misses 
removed over a standard cache and over single-stride prefetching. Single-stride 
prefetching is similar to prediction tables schemes: only one stride is consid- 
ered and stride modifications induce wrong predictions. The high percentage of 
misses removed over this latter scheme is artificially increased by the f~ct the 
benchmarks already exhibit very few misses. Still, the improvement appears to 
be significant, meaning that predicting stride changes is worth the additional 
hardware support. The improvement is due both to the better predictions and 
to the avoided cache pollution. For two codes, streaming prefetch performs worse 
than single-stride prefetch. By analyzing which loops breed this difference, we 
found out that  sometimes wrong predictions induce prefetching of data used in 
next loops, accidentally avoiding misses. 
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Fig. 3. (a) Average Memory Access Time, (b) Pre/etch Efficiency. 

The second aspect of streaming prefeteh, the efficiency of the dedicated hard- 
ware support used to minimize cache perturbations, is shown in Figure 3(a). 
First, it can be seen that, as for the miss ratio, streaming prefetch brings the 
average memory access time close to the 1-cycle optimum. Also, to test the ef- 
ficiency of the additional hardware support, we implemented streaming prefetch 
without any of the subbank support. In all cases, streaming prefetch performs 
worse than the standard cache. 

The last important aspect of a prefetching scheme is its impact on mem- 
ory traffic. We measured the number of excessive memory requests through the 
prefetch efficiency, i.e., the ratio of the number of hits on a prefetched line over 
the number of lines prefetched. This ratio is shown in Figure 3(b). Since the 
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efficiency of stream prefetching is close to 1, nearly no additional memory traffic 
is induced. Also, as expected, single-stride prefetch is less efficient because of the 
wrongly predicted stride changes mentioned throughout this paper. 

5 C o n c l u s i o n s  
In this paper, we wanted to show that it is possible to implement prefetching 

in such a way that  the reference streams usually found in numerical loop nests 
can be accessed without disruption. This required not only to improve address 
prediction over classic single-strided schemes, but also to implement prefetch- 
ing so that  normal cache operations are not affected and memory traffic is not 
increased. Streaming prefetch proved to be efficient both at hiding misses and 
reducing the average memory access time accordingly (meaning it has no nega- 
tive impact on cache). Finally, this scheme showed that  significant performance 
improvements can be obtained if the hardware is tailored to exploit compiler 
analysis. 
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