
Optimal Software Pipelining Through
Enumeration of Schedules *

Erik R. Altman 1 and Guang R. Gao 2

i IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
2 McGill University School of Computer Science, Montr6al, Qu6bec, Canada

A b s t r a c t . Resource-constrained soflware-pipelining has played an increasingly
significant role in exploiting instruction-level parallelism and has been drawing
intensive academic and industrial interest. The challenge is to find schedule which
is optimal: i.e. the fastest possible schedule under given resource constraints while
keeping register usage minimal. One interesting problem is open: the design of
an algorithm which ensures that such an optimal schedule will always be found
and with a cost which is manageable in practice. In this paper, we present a novel
modulo scheduling algorithm which provides a solution to this open problem.

The proposed algorithm has been successfully implemented and tested under
M O S T - - the Modulo Scheduling Testbed developed at McGill University. Un-
like the existing optimal modulo scheduling approach based on integer linear
programming (ILP) [6], our approach employs a search procedure which directly
exploits the program structure in terms of its dependence graphs. Experimental
results on more than 1000 loops from popular benchmark programs show that our
method often finds a schedule faster. In addition, with our approach many loops
require a surprisingly small number of schedules be searched to obtain an optimal
solution, thus making the approach quite feasible.

1 I n t r o d u c t i o n
Sofiwarepipelining [1, 8, 9, 10, 11, 13, 12] is widely used for loop scheduling. Advances
in computer architecture - - hardware and software - - yield a large solution space
containing many legal software pipelined schedules. In exploring the space of good
compile-t ime schedules, it is important to find the fastest software-pipelined schedule
for a particular set o f machine resources, e.g. function units and registers.

The performance of a software-pipelined schedule can be measured by the initiation
interval I I between successive iterations. Thus "highest performance" refers to the
schedule with the minimum II. A schedule with minimum initiation interval M I I is called
a rate-optimal schedule. In this paper, we address the following software pipelining
problem:

Problem: [OPT] Given a loop s and a machine architecture.hal, construct a schedule
whose initiation interval I I=MII is the smallest possible.

Previous approaches to solving OPTfal l in one o f two categories:

- lnexact or heuristic, i.e. no guarantee is made that the schedule obtained has initiation
intervalMII [1, 8, 9, 10, 13, 12].

-Exact where a guarantee is made that the schedule found has initiation interval
MII. Most previous exact approaches (that are applicable to loops with arbitrary
data dependence graphs (DDG's)) were based on Integer Linear Programming
(ILP) [3, 4, 5, 6]. [7] used graph structure and algorithms, but did not consider
registers.

* This work was supported by IBM and by research grants from NSERC (Canada) and MICRONET -
Network Centers of Excellence (Canada).

8 3 4

p r o c : main (DDG)
{

�9 Create Order_List
�9 Set Cuf f_Node= Order_List[O]
�9 gen_sched (Curt_Node, R a n k = O)

}

p r o c : gen_sched (Curr_Node, Rank)
{

* { LOW, High} = getJime-range (Cuff_Node)
�9 f o r (t ime = Low; t ime <_ High; time++) {
�9 t[Curr_Node] = t ime
�9 i f (R a n k = = L a s t) ~ F u l l S c h e d u l e

�9 e l s e gen~ched (Order_List[Rank + 1],
Rank + I)

}

(a) (b)

Fig. 1. Basic Enumeration Algorithm

ILP is a powerful and general technique that has been applied to a wide variety of
problems. Consequently many off-the-shelf packages are available for it. Furthermore,
for a significant number of loops the schedules obtained are better than those obtained
using heuristics [6]. Still ILP has drawbacks. (1) Use of a general purpose package
hinders adoption of pruning techniques specific to a particular application (such as
software pipelining). (2) The problem must be expressable in a set of linear constraints.
While much of software pipelining can be expressed in this manner, use of a realistic
mode l - - such as modeling of register coloring--requires a very large set of constraints
and takes a prohibitively long time, even for many small loops [2].

As an alternative to ILP, we propose enumeration of schedules. The idea of enumer-
ating schedules is not new, having been proposed at least as early as 1981 by Rau and
Glaeser [13]. However, Vegdahl's [16] is the only the enumeration approach of which
we are aware which belongs to the "exact" class outlined above. Though "exact", Veg-
dahl's approach explored a much larger solution space than necessary, and consequently
was practical on a far smaller set of loops than the approach proposed here.

The enumeration approach described here is also "exact" and is based on a natural
representation of software pipelining. By natural, we mean the approach is constructive.
Each complete schedule is built from successively larger partial schedules according
to both the dependence constraints between operations and the resource availabilities
of the target architecture. In constructing schedules our enumeration approach does not
require any awkward reworking of constraints into a linear form as required by some of
the ILP based exact methods [2, 3, 5, 6].

We have implemented our enumeration approach in M O S T (McGill's MOdulo
Scheduling Testbed) [2]. These advantages result in a significant improvement in the
time required to find a schedule for many loops. The fact that such an improvement
occurs suggests that a relatively small number of schedules need be enumerated to
guarantee an exact solution. Since solution of the OPTProblem problem is NP-Hard, it
is indeed good news that most loops require such a relatively small number of schedules
be enumerated.

The remainder of this paper is organized as follows. In the following section, we
illustrate our enumeration approach with the help of an example. Section 3 discusses
the two key conditions needed to guarantee that the enumeration approach solves the
OPT Problem. Section 4 provides a brief summary of experimental results. Concluding
remarks are presented in Section 5.

2 E n u m e r a t i o n A l g o r i t h m : O u t l i n e a n d I l l u s t r a t i o n

The heart of the enumeration algorithm is quite simple, and is embodied in the
the routine g e n _ s e h e d in Figure l(b). The full enumeration algorithm can be found
in [2]. As we shall describe in Section 3, the major subtlety lies in choosing a good

8 3 5

proc : main (DOG)

Order_List = {A,B,C,D,E}

gen sehed (A,O)
- " - - - - 4 _

p r o c : gen_sched (A,O)
{Low, High} = {0, O}
f o r (time = O; time <= O; time++) {

(a) t[A1 = 0
gen_ sehed (B,1)

t

p r o c : gen_sched (B,1)
{Low, High} = {1,2 I
f o r (time = 1; time <= 2; time++) {

(b) t [8 1 = 1
gen__ sched (C,2)

i

p r o c : gen_sched (C,2)
{Low, High} = {2,2}
f o r (time = 2; time <= 2; time++) {

(c) t [Cl = 2
gen_~ sched (D,3)

To Figure (d)

proc." gen_sched (D,3)
{Low, High} = {3,4]
f o r (time = 3; time <= 4; time++) {

t[D] = 3
gen sched (s

,,

proc: gen_sched (E,4)
@ ~ {Low, High} = {1,2}

f o r (time = 1; time <= 2; time++) {

t[E] = 1
Complete Schedule 1

~[E] = 2 ~ (Next iter)
Complete Schedule 2

} ~ (UnwindRecursion)

12 Schedules Total

11213 141516171s191101111121
t[A]
LIB}
tiC1
tD]
t[EJ

0

1 ~ 2

2 ~ 3

3 ~ 4 ~ 4 ~ 5

1 2 1 2 3 1 2 3 1 2 3 4

(d)

(e)

(t)

Fig. 2. Example of Enumeration Algorithm.

order in which to schedule the nodes, and selecting the proper range of times at which
to schedule each node.

The g e n _ s e h o d routine is invoked initially by the routine gan_main shown in
Figure l(a). Subsequently g o n _ s c h e d schedules the current node X with which it is
called at a sufficiently large set of times as to guarantee enumeration of an optimal
schedule. For each of these times t IX], g e n _ s c h e d may invoke itself recursively with
the next node to be scheduled from Order_List. This process is illustrated by the example
in Figure 2. In this example, assume t h a t / / = 2 and that all nodes have unit execution
time. (This example was chosen to illustrate the workings of our enumeration approach,
and not as a difficult loop to schedule. On the other hand, the DDG in Figure 3 can
present difficulties to naive methods, as will be described in Section 3.)

In Figure 2(a), genlnain begins by ordering the nodes in the DDG at the left of
the Figure. For reasons that will be explained below, the order is chosen to be A-B-
C-D-E. g e n _ m a i n then invokes g e n _ s e h e d with the first node, Order_List[O] = A.
G e n _ s c h e d first calculates the range of times at which A should be scheduled. Since
A is the first node scheduled, it serves as the anchor relative to which all other nodes
will move. Hence both the Low and High values of A are 0. Once the range for A is
established, g e n _ s c h e d iterates through it, assigning t[A] each successive value of
time (or in this case the single time t[A] = 0). Given a value for t[A], g e n _ s c h e d is
ready to schedule next node in Order_List, node B. This is done by recursively invoking

836

g e n _ s c h e d as shown at the bottom of Figure 2(a).
Given that t[A] = 0, t[B] >__ 1. However, there is no upper limit to the set of times at

which B can be scheduled. Thus, to make the enumeration approach feasible some rule
for pruning the set of times must be used. Since we are interested in enumerating exact
schedules, this pruning must not eliminate any times which could result in a minimum
register schedule fitting the function unit constraints of the target architecture. As has
been previously observed [13], placing B a t / / = 2 consecutive times is sufficient to
guarantee that some offset will be found which function units are available to execute
B. For acyclic DDG's, list scheduling nodes in a topological order guarantees t h a t / /
consecutive offsets will always be available. However, aside from not applying to cyclic
DDG's, this list scheduling approach provides no guarantee of register minimality.

Intuitively, for enumeration of a minimum register schedule, the set of times t[B]
should be as close to t [A] as possible. Hence i f t [B] is placed a t / / = 2 consecutive times
for function unit purposes, for register purposes t[B] should have Low=l and High=2

- - the closest values to t[A] = 0. A fuller set of register minimization requirements is
described in Section 3 and a proof of their sufficiency may be found in [2].

Gan_sehed first assigns t[B] = 1, then invokes itself recursively with node C - -
the next node in Order_List. Due to the cycle B-G-B, B places both an upper and lower
bound on when C may execute and hence Low=High=2. Once tiC] is assigned 2, the
next node in Order_List is 13. Scheduling of 13 is very similar to the scheduling of node B
- - only predecessors have been scheduled and there is no upper bound for a legal t [13].
Thus like B, D is assigned t h e / / = 2 times closest to its immediate predecessor C, i.e.
Low=3 and High=4. Hence t[D] is assigned 3 and g a n _ s e h e d is recursively invoked
once more with the last node in Order_List, node E.

The placement of E is constrained by both t[A] = 0 and t[13] = 3, giving Low=l
and High=2. The iteration first assigns t[E] = 1 yielding Complete Schedule 1 shown
at the bottom of Figure 2(e). In the next iteration t[E] = 2 yielding Complete Schedule
2 shown at the bottom of Figure 2(e). At this point g a n _ s c h e d returns and t[D] is
incremented to 4 in the next iteration of the f o r loop. Then g e n _ s e h o d is called again
with node E, but this time Low=f and High=3. This general process continues yielding
the set of 12 schedules depicted at the bottom of Figure 2(f).

3 G u a r a n t e e i n g E n u m e r a t i o n o f a n O p t i m a l S c h e d u l e

Having seen the basic operation of the enumeration algorithm, it remains to show that
the set of schedules enumerated contains at least one that is optimal for the target
architecture, i.e. fitting the function unit constraints and minimizing registers. Space
limitations do not permit a formal proof that the proposed algorithm does this. However
in Subsection 3.1, we state two theorems to this effect and present an intuitive outline
of their proof. A full proof may be found in [2].

As just noted in Section 2, a schedule fitting function unit constraints can be guaran-
teed by placing each node in at least//consecutive time slots - - ifI/consecutive time
slots are legal. It remains to consider (1) when//consecutive times are not available and
(2) the range of times at which each node must be scheduled to guarantee enumeration
of a schedule which uses minimum registers. Luckily, both (1) and (2) can be addressed
within the same framework. However, before describing this framework, we give an
example to motivate it.

To see that scheduling a node in Hconsecutive offsets does not guarantee a minimum
register schedule, consider the DDG in Figure 3. Assume that nodes A and G have been
scheduled, but not node J. As nodes H, J, and K are on the shorter path from A to
G (assuming all nodes have unit execution time), they can "slide" between A and G.
Furthermore, they should clearly slide as close to G as possible in order to have a

837

When must these nodes !
be scheduled for a minimum ! , ~ , . (~ ,

Fig. 3. DDG in which H offsets are insufficient for register minimization.

minimum register schedule. However placing them in only the H offsets closest to A
fails to accomplish this.

More generally 5 possible relationships of the current node to previously scheduled
nodes must be considered when determining the time range ([Low, High]) for the current
node [2]. These cases should be considered in sequence with the first matching case
taking precedence when more than one fits. These five relationships are illustrated
by the DDG below. (This simple DDG was constructed solely to illustrate these five
relationships and is not meant to be representative of real loop DDG's.) Assume that the
nodes are scheduled in alphabetical order once again.

A: 1st node scheduled B: 1 st node of connected component C: Node in SCC already schedule,

D: No node on undirected ~cle
with D scheduled

E: Node on undirected cycle with E
already scheduled

- R e l a t i o n s h i p 1: A is the first node scheduled and serves as the anchor, i.e. Low=O
and High=O.

- Relationship 2: B is the first node scheduled in its connected component (in the
undirected sense). Hence the placement of A in no way constrains B nor does it affect
register usage of B. Hence to guarantee a schedule fitting function unit requirements
B is placed in H consecutive offsets, i.e. Low=O and High = H - 1.

-Relat ionship 3: C is in the same strongly connected component (in the directed
sense) as node B, so t[B] places both a lower and upper bound on ~[G] and conse-
quently Low and High are set to these bounds.

- Relationship 4: D is on no undirected cycle with nodes which have already been
scheduled. (D is on an undirected cycle with nodes E, F, G, and H, but none of
these nodes has been scheduled.) Increasing ~[D] increases register requirements on
edge A-D, but cannot decrease them elsewhere since E, F, G and H have not been
scheduled. Likewise placement of D does nothing to limit the offsets in which E, F,
G and H may be placed. The fact that register effects from scheduling node D are
isolated to edge A-D reflects a general property of nodes with Relationship 4 - -

838

that placement of the node affects register requirements on only a single edge [2].
Consequently placing D at the H the consecutive times closest to t[A] is sufficient
for both register and function unit purposes.

- Relationship 5: E is on an undirected cycle with nodes D, F, G, and H; and node D
has been scheduled. Thus the "join" node F of the cycle must be within a fixed range
of D in order to minimize registers. Likewise, for each of the possible assignments
to nodes F, G, and H, E must assume all H offsets. In order for node E to "slide"
from as close to D as possible to as close to F as possible, the possible range of
F must be computed, even though F has not yet been scheduled. This can be done
by assuming first that node H adjoining scheduled node D is scheduled as far as
need be from D. Then given this maximum time for t [H], a similar maximum can be
calculated for node G. Finally, given the maximum for t[G], the maximum for t[F]
can be computed. Then the High for t [E] is the maximum t[F] less the distance from
E to F. Likewise Low for t[E] is t[D] plus the distance from D to E. More generally
a node can be on multiple undirected cycles, and in this case the widest bounds
arising from each of them must be used [2].

Topological Scheduling Order: A, B, C llffi2

Let t[A] = 0 (" ~ (~

No constraint on t[B]

Choose t[B] = 100

More than rain registers on edge AG

DDG in which topological node ordering is bad

As mentioned in Section 2, it is also essential to schedule nodes in a proper order to be
certain of enumerating an optimal schedule. The essential characteristic ofaproperorder
is that except for the first node scheduled of each (undirected) connected component, each
node must have an immediate predecessor and/or an immediate successor previously
scheduled. This order may or may not be a topological order. To see why this ordering
is needed, consider the DDG above. It is clear that if we wish to minimize registers, the
placement of A limits the placement of B. For example, i f H = 2 and t[A] = 0, then
assigning t[B] = 100 will result in a schedule using far more registers than necessary
since the value of A will need to be kept live for 50 iterations. If the nodes are scheduled
in the order A-C-B, then the effect of scheduling node A is carried through node C
and an appropriate range for t[B] may be chosen. However, if the topological order is

-B- C is used, the placement of A places no upper bound on t [[3] and consequently a
non-minimum registe r schedule may result.

3 . 1 O p t i m a l i t y T h e o r e m s

By scheduling nodes in a proper order, and by scheduling each node X at a set of
times based on the relationship of X to already scheduled nodes, it can be proved that
an optimal schedule will be enumerated [2]. Although the full proof is too lengthy to
present here, we state two definitions and sketch the proof of two theorems.

D e f i n i t i o n 3.1 Let t[X] be first time each node X in a loop executes. The set oft[X]
for each node in the loop form the loop schedule.

Figure 2 illustrates a DDG and 12 possible schedules (sets of t [X] values).

D e f i n i t i o n 3.2 Given a loop schedule, t[X], a loop kernel is the set of offsets o[X] =
t[x] ~oa/ I .

839

Since H = 2, in Schedule I from Figure 2,

t [A] = 0 t [B] = l t [C] = 2 t [D] ~ t [E] =
o[A] 0 o[B] 1 o[C] 0 o[D] -- o[E]

The loop kernel specified by the o[X] values reveals that when the loop is in its steady
state, nodes A and C execute together at offset 0, while nodes B, D, and E execute
together at offset 1.

T h e o r e m 3.1 The enumeration algorithm enumerates at least one schedule for all
legal loop kernels.

Enumeration of all legal loop kernels insures that a schedule will be found fitting
function unit constraints (if such a schedule exists). The essential idea in the proof
makes use of the 5 relationships described at the start of Section 3, between the current
node and previously scheduled nodes. The proof is inductive and shows that for each
of the 5 relationships, that if the previously scheduled nodes were given a sufficiently
large range of times, the enumeration algorithm will give the current node a sufficiently
large range of times as well.

T h e o r e m 3.2 At least one of the schedules enumerated for each loop kernel uses the
minimum possible number of registers of any schedule corresponding to that kernel.

Since a minimum register schedule is enumerated for each kernel, a schedule meeting
function unit constraints and using the minimum number of registers must be enumerated
if such a schedule exists for a particular II. This proof is also inductive and is carried
out along the lines of the proof for Theorem 3.1.

4 E x p e r i m e n t a l R e s u l t s

The enumeration approach described in Section 3 has been implemented in MOST (our
MOdulo Scheduling Testbed). MOSTalso implements several other modulo scheduling
approaches including another exact approach based on integer linear programming [2, 4,
5, 6], as well as several leading inexact heuristic approaches. As input to MOST, we used
1008 single basic block benchmark loops with less than 64 low level operations. The
loops were taken from Spec9 2 fp, Spec9 2 int, the NAS Kernel s, Linpack, and
the L i v e r m o r e Loops . We modeled a target architecture with 4-wide issue and with
function units and latencies representative of the values found in modern superscalar
architectures [14, 15]. Because of space limitations, full results cannot be included here,
however they may be found in [2]. The major findings are summarized below.

- In terms of the number of loops scheduled at the minimum initiation interval II~,~,
the performance of the enumeration and ILP approaches is similar. Enumeration
holds a significant advantage when register minimization is important.

- However, the median time of the enumeration approach was significantly shorter.

The enumeration approach also allowed us to discover two general characteristics of
the set of modulo schedules for a loop:

- The schedule space for most loops contains at least one schedule in which registers
and all function units are simultaneously minimized.

- However, most loops have many other schedules as well. In fact schedules generally
exist with all combinations of registers and function units - - no tradeoff between
the two is evident.

840

5 C o n c l u s i o n
This paper has presented a novel software pipelining approach which enumerates a
sufficiently large set of schedules so as to guarantee inclusion of an optimal one, i.e.
one with II=MII, using minimum registers, and fitting the target architecture. This
enumeration approach is easily adapted to resource minimization, making it suitable for
use in synthesis and architectural definition as well as in compilers.

An experimental testbed MOST, was constructed to evaluate the proposed approach.
Enumeration compared favorably with integer linear programming approaches, espe-
cially in terms of register minimization.
Acknowledgements
R. Govindarajan had many useful suggestions and criticisms. Kemal Ebcio~lu, Artour Stoutchinin, Jian Wang,
and the anonymous referees also provided many useful observations. We thank them.

References
1. Alexander Aiken and Alexandru Nicolau. A realistic resource-constrainedsoftware pipelining algorithm.

In Alexandru Nicolau, David Gelemter, Thomas Gross, and David Padua, editors, Advances in Languages
and Compilers for Parallel Processing, pages 274-290. Mass., 1991.

2. Erik R. Altman. Optimal Software Pipelining with Function Unit and Register Constraints. PhD thesis,
McGill U., Montr6al, Qu&, Oct. 1995.

3. Erik R. Altman, R. Govindarajan, and Guang R. Gao. Scheduling and mapping: Software pipelining in
the Presence of Structural Hazards. In Proc of the SIGPLAN '95 Conf on Programming Language Desigu
andlmplementation, pages 139-150, La Jolla, Calif, June, 1995.

4. Alexandre E. Eichenberger, Edward S. Davidson, and Santosh G. Abraham. Optimum Modulo Sched-
ules for Minimum Register Requirements. In Conf. Proc.. 1995 Intl. Conf. on Supercomputing, pages
3140, Barcelona, Spain, Jul. 3-7, 1995.

5. P. Feautrier. Fine-grain Scheduling under Resource Constraints. In Seventh Annual Workvhop on Lan-
guages and Compilers for Parallel Computing, Ithaca, USA, August 1994.

6. R. Govindarajan, Erik R. Altman, and Guang R. Gao. Minimizing register requirements under resource-
constrained rate-optimal software pipelining. In Proc. of the 2 7 th Annual Intl. Syrup. on Microarchitecture,
pages 85-94, San Jose, Calif., Nov. 30-Dec.2, 1994.

7. C. Hanen. Study of a NP-Hard Cyclic Scheduling Problem: The Recurrent Job-Shop. In European
Journal of Operations Research, (72) 1994, pages 82-101.

8. Richard A. Huff. Lifetime-sensitive modulo scheduling. In Proc of the SIGPLAN "93 Conf. on Program-
ming Language Design and Implementation, pages 258-267, Albuquerque, N. Mex., June, 1993.

9. Monica Lam. Software pipelining: An effective scheduling technique for VLIW machines. In Proc. of
the SIGPLAN '88 Conf. on Programming Language Design and Implementation, pages 318-328,Atlanta,
Georgia, Jun. 22-24, 1988.

10. Soo-Mook Moon and Kemal Ebcio~lu. An efficient resource-constrained global schedu ling technique for
superscalar and VLIW processors. In Proc. of the 25th Annual IntL Syrup. on Microarchitecture, pages
55-71,Portland, Ore., Dec. 14 , 1992.

11. Qi Ning and Guang R. Gao. A novel framework of register allocation for software pipelining. In Conf.
Rec. of the 20th Annual Symposium on Principles of Programming Languages, pages 29~2, Charleston,
South Carolina, Jan. 10-13, 1993.

12. B. R. Rau and J. A. Fisher. Instruction-level parallel processing: History, overview and perspective.
J. of Supercomputing, 7 :9-50, May 1993.

13. B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedulable horizontal architec-
ture for high performance scientific computing. In Proc. of the 14th AnnualMicroprogramming Work.,
pages 183-198, Chatham, Mass., Oct. 12-15, 1981.

14. James E. Smith and Shlomo Weiss. PowerPC 601 and Alpha 21064: A Tale of Two RISCs. Computer,
27(6):46-58, Jun. 1994.

15. Peter Song and Marvin Denman. The PowerPC 604 R1SCMicroproc. Motorola; IBM, 1994.
16. Steven R. Vegdahl. A dynamic-programming technique for compacting loops. In Proc. of the 25th Ann.

Intl. Syrup. on Microarchitecture, Portland, USA, Dec, 1992.

