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Abstract .  This paper describes and evaluates new methods for relation declustering in 
parallel databases. To process queries in parallel, relations are partitioned across multiple 
processors, typically by using the value of one single attribute. This kind of declustering has 
resulted in poor performance in the presence of data skew. Alternatively, the work contained 
herein proposes several strategies to decluster a relation through the use of multiple attributes. 
To demonstrate the validity of our approach, a thorough performance evaluation is done. The 
findings demonstrate the effectiveness of this kind of partitioning methods as opposed to 
traditional ones. In addition we analyze the performance of the different strategies relative to 
the speed-up and scale-up metrics. 

To sum up, performance results reveal that multi-dimensional declustering methods 
constitute a very promising alternative to conventional one-dimensional methods to partition 
relations in parallel database systems. 

I Introduction. 

Most of the prior work on parallelization of relational queries use single-attribute 
partitioning mechanisms (usually hash or range partitioning) to distribute data 
among processors [4]. This approach suffers from two main drawbacks which have a 
critical incidence on the performance of parallel database systems: 

1. A potential load imbalance in presence of data skew. 
2. The inability to efficiently manage relational queries whose predicate includes 

an attribute other than the partitioning attribute. 
Recent papers on query processing in parallel relational systems [5,13] have 

addressed only one of the two aforementioned problems. Some of the work dealing 
with data skew and load balancing [7] focuses mainly on parallel join algorithms. 

Provided that input relations are always declustered, the join operation can be 
considered as a kind of multiscan operator, where tuples in different fragments may 
have to be compared. From this perspective, to obtain the load balance being sought, 
an additional mechanism to redistribute tuples is required. Conversely, in uniscan 
operators (Select, aggregation operators, etc.), in which the processing of each tuple 
is independent of the processing of any other tuple, the original declustering of 
relations plays a crucial role in achieving the desired load balance. 

This research presents a summary on innovative partitioning techniques which 
overcome bothpreviously mentioned shortcomings, by following a multi-dimensional 
approach to decluster relations. In this case, focus is placed on the uniscan operator 
Select, which is obiquitous in relational queries. The multi-dimensional partitioning 
under study in multiscan operators is the goal of our current research [8]. 

Thus, our multi-dimensional partitioning mechanism offers a general proposal 
which meets the following requirements: 
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�9 The ability to efficiently answer queries with predicates involving any number 
of attributes. 

�9 A support tool for the three basic kinds of sear types, i.e. range, exact match 
and partial match. 

�9 Tolerance in the presence of data skew. 
�9 Load balance in the assignment of fragments to processors. 

II Multi-dimensional declustering strategies. 
The distinguishing feature of our proposals on multi-dimensional declustering lies in 
the implementation of a novel multi-attribute indexing method referred to as the Q- 
tree, which establishes a balanced division of the tuple space. The so-called Q-tree is 
balance-paginated and is based on the use of k-d-trees. Our structure incorporates 
key ideas for data and index node splitting taken from hB-trees [6]. 

At the leaf level of the Q-tree, each page embodies a data container where tuples 
can be found. When a data container overflows, it is split by applying the median 
value for all the tuples on a selected attribute. The minimum utilization ratio of the 
two resulting data containers ensuing the split can then be defined by the user. In 
order to support this feature, in addition to the median value for the chosen attribute, 
the primary key value may be eventually employed to make a balanced split in the 
event that a resulting containers does not reach the pre-defined utilization ratio. 

Although there is a wide range of policies from which to choose the splitting 
attribute [1], several tests demonstrate the best attribute strategy renders markedly 
high performance. According to this strategy, all attributes which participate in the 
index are selected as splitting attributes with a similar frequency. What is more, by 
following the path from the root to any one leaf, each and every attribute can be 
found the same number of times. Therefore, in order to locate the splitting attribute, 
an accurate record must be kept of the number of times each one has been used to 
split a full container. From those that have been used less frequently, we select the 
one which makes the split better-balanced. 

At the next upper level in the Q-tree, every page contains a local k-d-tree which 
records the successive splits of the data containers. Upon division of a full container, 
a new node is inserted in the k-d-tree as usual. When an index node overflows, a 
sub-tree is transferred to a new index page, and the complete path going from the 
root to the extracted sub-tree is posted to its parent in the Q-tree. A detailed 
description of the Q-tree can be examined in [1]. 

To the best of the authors' knowledge, all prior proposals on data partitioning 
have compulsory used previous information about the workload. However there are 
scenarios in which this information is difficult to obtain, as well as being a 
considerably short-term representative. In such cases, the application of a general 
partitioning method which does not draw any information from the workload (a 
blind method) would be decidedly useful. 

Thereby, two fundamental partitioning strategies based on Q-trees will be 
introduced and analyzed: (i)multi-dimensional partitioning based on an existing 
index, and (ii) workload-based multi-dimensional partitioning. 
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The former, multi-dimensional partitioning based on an existing index (EI) 
qualifies as a blind strategy. In this approach, the partitioning process departs from 
an existing Q-tree and distributes data containers among processors giving three 
possible policies: 

�9 The fine grain, which simply uses the leaf level of the Q-tree by distributing 
data containers among a number of processors. 

�9 The medium grain, in which the tuple space is perceived as a set of sub-spaces, 
each containing a number of data containers. In this strategy, the algorithm 
takes each sub-space separately (an index page on parent level of the data) and 
spreads it among processors in a balanced way. 

�9 The coarse grain distribution, which considers the tuple space as merely 
composed of sub-spaces, regardless of its content. In this case, the algorithm 
traverses the parent level of the data by assigning complete sub-spaces to the 
processors, ff the assignment lacks evenness, some sub-spaces can eventually 
be broken up into smaller ones in order to achieve load balance. 

The latter, workload-based multi-dimensional partitioning (WB) uses a prior 
knowledge of both the workload and the processing features of the system to finally 
build a Q-tree, which is used as a partitioning directory. The data containers are 
assigned to the processors during the final stage of the partitioning process. 

With a view to briefly describe the building process of the Q-tree for the WB 
mechanism, let us assume a workload consisting of a number of selection queries Qi. 
Each query Qi retrieves and processes {Qi} tuples from the database. So as to 
establish the resources needed for a typical query, we compute the average number of 
tuples satisfying the query, whose value is termed as {Qavs}. Once the number P of 
processors which should participate in a typical query has been identified, the ideal 
objective is to make all P processors share in the processing of {Qa,~} tuples. 

With this goal in mid, the size of an average data container may be defined as 
{Q~vg}/P tuples. At this point, data containers are distributed in a balanced fashion 
across the P processors, firstly by defining the size of the sub-spaces as 
{Number of  containers}/P, and secondly, by using a medium grain distribution 
approach to allocate data to the processors. 

I l L  Performance Results 

In this section, a sampling of relevant performance figures of our proposal will be 
presented. An in-depth evaluation of the multi-dimensional partitioning strategies 
based on Q-trees can be consulted in [2]. 

The performance results shown here have been obtained by using a workload 
consisting of a 50,000-tuple relation EA/P with six attributes, two of which, termed 
Age and Salary, being search attributes. Queries in the workload have been marked 
to capture a high degree of data skew. On the other hand, the query execution model 
and simulation parameters themselves are those conventionally found in shared- 
nothing parallel dbms. They can also be reviewed in [2]. 

For the purpose of comparison between multi-dimensional declustering as 
opposed to one-dimensional or linear approach, a mechanism to horizontally 
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decluster the relation EMP based on Bubba's Extended-Range Declustering Strategy 
[3], has been implemented. Furthermore, two possible approaches to linearly 
decluster our EMP relation have been employed. The first one uses Age as the 
primary attribute and Salary as the secondary one. By contrast, the second approach 
uses the same primary and secondary attributes, but in the inverse order. Figure la 
depicts the response time for a typical query in the workload obtained for both of the 
two strategies considered. As can be noted, the multi-dimensional partitioning 
significantly outperforms the linear partitioning. 
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Figure 1. (a) Response times and (b) percentage of processors involved in the execution 
of a typical query for multi-dimensional and linear partitioning methods. 

The performance differences between linear and multi-dimensional partitioning 
strategies are better realized by examining the percentage of processors involved in 
the execution of queries. As figure lb demonstrates, the average percentage of 
processors participating in the execution of a query is much greater when multi- 
dimensional partitioning is used. Nonetheless, the use of a high percentage of 
resources in a parallel machine does not necessarily mean that the method is 
efficient. Rather, the careful examination of the way in which such resources are 
used is required. In this sense, figure 2 draws out the fact that compared to the linear 
partitioning method, the multi-dimensional method presents higher degrees of 
balance in the use of resources. It should be noted that a a multi-compnter system 
with eight processors has been employed to conduct this experiment. 
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Figure 2. Elapsed time of each processor in multi-dimensional partitioning as compared 
to linear partitioning. 

As can be visualized in figure 2, not only does linear partitioning devote a longer 
time at each processor in order to execute the query, but it also shows significant 
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fluctuations from processor to processor in the inverted time. Conversely, multi- 
dimensional partitioning displays the time taken to be virtually constant among all 
processors. Therefore, the observable evidence reveals an important feature of multi- 
dimensional partitioning in parallel systems, that being, load balance even in the 
presence of data skew. 

To measure just how our partitioning models affect the scale-up property of the 
parallel system, we varied the number of processors from eight to thirty-two, and at 
the same time increased the source relation from 50K to 200K tuples respectively. 
Additionally, with regard to the speed-up experiments, we submitted queries in the 
workload on a 100K-tuple relation by varying the number of processors from eight to 
thirty-two. 
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Figure 3. Speed-up features for EI and WB methods. (a) Response times. (b) 
Corresponding speed-up curves. 

As expected, we observe that the response time decreases as the number of nodes 
increase (Figure 3a). When WB strategy is used, there is a significant reduction upon 
passing from eight to sixteen nodes. This situation is mainly caused by the fact that 
eight no longer remains an optimal number of processors, since the response size of 
a typical query has actually doubled. A view of figure 3b shows a superlinear speed- 
up for the WB strategy. In order to realize the differences in this figure, it is 
neccesary to say that data containers in the WB method are five times larger than 
data pages in EI strategies.In this way, the greater number of nodes utilized causes 
more spreaded data containers are. Hence, when the WB method is applied, the seek 
time overhead is reduced at each node. 

Finally, figure 4 displays how the different partitioning strategies are affected by 
scalability criterion. Here, the ordinate references the time needed to execute a 
typical query in the workload. The first conclusion we draw from it is directly related 
to the reliability of the WB strategy. Since the WB Q-tree was precisely designed by 
taking into account both the resource requirements of a typical query and the number 
of processors, it is expected that by doubling the resource requirements and the 
number of nodes simultaneously, the computation will not be affected. However, this 
reasoning only holds true as long as the load distribution is maintained in a balanced 
manner. Figure 4 demonstrates hence, the accuracy the WB partitioning method. 
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Figure 4. Scale-up for EI and WB partitioning methods. 

With regard to the EI strategies, observation clarifies that fine and medium grain 
distributions behave similarly concerning scalability. It is worth mentioning that 
even without any prior information on the workload, both EI strategies present a 
notably operative adaptation to system scalability. 

IV Conclusions 

In this paper, innovative methods for declustering a relation in parallel database 
systems have been introduced. Our proposals are based on the resulting division 
prompted by a multi-attribute search structure (the Q-tree) in the tuple space. This 
summarized version, which is part of a much larger study, includes some interesting 
performance figures of the methods employed. In conclusion, the full analysis of the 
methods used by the research team confirm the successful application of multi- 
dimensional partitioning based on the use of the Q-tree structure according to the 
block of observable knowledge presented. 
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